[1] |
HU W, LEI Y, ZHANG J, et al. Mechanical and thermal properties of RE4Hf3O12 (RE=Ho, Er, Tm) ceramics with defect fluorite structure. Journal of Materials Science & Technology, 2019, 35(9): 2064.
|
[2] |
ZHANG X C, XU B S, WANG H D, et al. Modeling of the residual stresses in plasma-spraying functionally graded ZrO2/ NiCoCrAlY coatings using finite element method. Materials & Design, 2006, 27(4): 308.
|
[3] |
周舟, 张晶晶, 汪伟, 等. 模拟CMAS腐蚀用玻璃的制备及其析晶性能. 大连工业大学学报, 2022, 41(4): 292.
|
[4] |
SCHULZ U, BRAUE W. Degradation of La2Zr2O7 and other novel EB-PVD thermal barrier coatings by CMAS (CaO-MgO-Al2O3- SiO2) and volcanic ash deposits. Surface and Coatings Technology, 2013, 235: 165.
|
[5] |
DULUARD S, DELON E. Transient and steady states of Gd2Zr2O7 and 2ZrO2∙Y2O3 (ss) interactions with calcium magnesium aluminium silicates. Journal of the European Ceramic Society, 2019, 39(4): 1451.
|
[6] |
HE Y, WANG X, WANG C, et al. Significantly improved corrosion resistance of high-entropy rare-earth silicate multiphase ceramics against molten CMAS. Journal of the American Ceramic Society, 2023, 106(5): 2744.
|
[7] |
DREXLER J M, ORTIZ A L, PADTURE N P. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass. Acta Materialia, 2012, 60: 5437.
|
[8] |
KRAUSE A R, LI X, PADTURE N P. Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings. Scripta Materialia, 2016, 112: 118.
|
[9] |
ZHOU X, ZOU B, HE L, et al. Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures. Corrosion Science, 2015, 100: 566.
|
[10] |
ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015, 6: 8485.
DOI
PMID
|
[11] |
ZHAO Z, XIANG H, DAI F Z, et al. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. Journal of Materials Science & Technology, 2019, 35(11): 2647.
|
[12] |
REN K, WANG Q, SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Materialia, 2020, 178: 382.
|
[13] |
WRIGHT A J, WANG Q, KO S T, et al. Size disorder as a descriptor for predicting reduced thermal conductivity in medium- and high-entropy pyrochlore oxides. Scripta Materialia, 2020, 181: 76.
|
[14] |
DENG S, HE G, YANG Z, et al. Calcium-magnesium-alumina- silicate (CMAS) resistant high entropy ceramic (Y0.2Gd0.2Er0.2Yb0.2Lu0.2)2Zr2O7 for thermal barrier coatings. Journal of Materials Science & Technology, 2022, 107: 259.
|
[15] |
夏校良. 阳离子掺杂稀土锆酸盐的有序无序转变与电学性能研究. 哈尔滨: 哈尔滨工业大学博士学位论文, 2011.
|
[16] |
WRIGHT A J, WANG Q, LUO J. Single-phase duodenary high- entropy fluorite/pyrochlore oxides with an order-disorder transition. Acta Materialia, 2021, 211: 116858.
|
[17] |
JIANG S, HU T, GILD J, et al. A new class of high-entropy perovskite oxides. Scripta Materialia, 2018, 142: 116.
|
[18] |
LIN G, WANG Y, YANG L. CMAS corrosion behavior of a novel high entropy (Nd0.2Gd0.2Y0.2Er0.2Yb0.2)2Zr2O7 thermal barrier coating materials. Corrosion Science, 2023, 224: 111529.
|
[19] |
PELLEG J. Diffusion in Ceramics. Berlin: Springer Publishing, 2016: 301.
|
[20] |
MAHADE S, LI R, CURRY N, et al. Isothermal oxidation behavior of Gd2Zr2O7/YSZ multilayered thermal barrier coatings. International Journal of Applied Ceramic Technology, 2016, 13(3): 443.
|