无机材料学报

• • 上一篇    下一篇

前驱体转化陶瓷法制备Ti3SiC2陶瓷及其热稳定性研究

郑斌1, 康凯1, 张青2, 叶昉2, 解静1, 贾研1, 孙国栋1, 成来飞2   

  1. 1.长安大学 材料科学与工程学院, 西安 710064;
    2.西北工业大学 超高温结构复合材料重点实验室, 西安 710072
  • 收稿日期:2024-01-08 修回日期:2024-03-07 出版日期:2024-03-08 网络出版日期:2024-03-08
  • 作者简介:郑斌(2000-),男,硕士研究生.E-mai1: 1522186275@qq.com
  • 基金资助:
    国家自然科学基金(52272034);陕西省重点研发计划(2023JBGS-15);陕西省自然科学基础研究计划(2020TQ-372);长安大学中央高校基本科研业务费专项资金资助(300102313202)

Preparation and Thermal Stability of Ti3SiC2 Ceramics by Polymer Derived Ceramics Method

ZHENG Bin1, KANG Kai1, ZHANG Qing2, YE Fang2, XIE Jing1, JIA Yan1, SUN Guodong1, CHENG Laifei2   

  1. 1. School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China;
    2. Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
  • Received:2024-01-08 Revised:2024-03-07 Published:2024-03-08 Online:2024-03-08
  • About author:ZHENG Bin (2000-), male, postgraduate.E-mail: 1522186275@qq.com.
  • Supported by:
    National Natural Science Foundation of China (52272034); Shaanxi Province Key R&D Program of China (2023JBGS-15); Natural Science Basic Research Program of Shaanxi Province(2020JQ-372); Special funding forbasic scientific research business expenses in central universities of Chang'an University (300102313202)

摘要: Ti3SiC2因具有良好的高温稳定性, 可作为改性材料来提高C/C复合材料的抗氧化性能, 应用潜力巨大。本工作以钛粉和液态聚碳硅烷(Liquid Polycarbosilane, LPCS)作为原料, 采用前驱体转化陶瓷(Polymer Derived Ceramics, PDC)法在1200 ℃、1300 ℃、1400 ℃、1500 ℃下制备了四种相含量的Ti3SiC2陶瓷, 研究了烧结温度对其物相组成及形貌的影响, 以及不同Ti3SiC2相含量对陶瓷材料的抗氧化和抗热震性能的影响。结果表明, 在Ti:Si摩尔比为3:1.5、烧结温度为1300 ℃、1400 ℃、1500 ℃条件下, 均有层状结构的Ti3SiC2生成。当烧结温度为1400 ℃时, 陶瓷产物中Ti3SiC2质量分数达到92.10%, 抗弯强度达172.68 MPa。在1300 ℃静态空气环境下氧化7 h, 陶瓷氧化增重随Ti3SiC2相含量增大而逐渐降低, 氧化过程中材料表面生成了以TiO2为主相的保护膜, 有效延缓了氧气向内部扩散。对试样进行1300 ℃空气热震和残余强度测试结果发现, 随着热震次数的增加, 所有材料的抗弯强度均有所下降;但随着Ti3SiC2相含量的增加, 试样的抗热震性能和残余强度均提高。Ti3SiC2相含量最高的试样经过30次热震后失重30.66%, 残余抗弯强度为120.18 MPa, 这主要归因于层状结构的Ti3SiC2大幅增加了裂纹扩展路径及其良好的氧化性能。

关键词: Ti3SiC2, 无压烧结, 氧化性能, 热震性能

Abstract: Ti3SiC2 compound can enhance the oxidation resistance of C/C composites as a modifying material t, thanks to its superior high-temperature stability, indicating significant potential for applications. In this work, titanium powder and liquid polycarbosilane (LPCS) were served as starting materials for producing Ti3SiC2 ceramic with four different phase contents by polymer derived ceramics (PDC) method at temperatures of 1200 ℃, 1300 ℃, 1400 ℃ and 1500 ℃, respectively. Effects of sintering temperature on the phase compositions and morphology of the ceramics were studied. Additionally, the impact of varying Ti3SiC2 phase contents on oxidation resistance and thermal shock resistance of ceramic materials were also explored. The results showed that layered Ti3SiC2 was formed at a Ti:Si molar ratio of 3:1.5 when sintered at 1300 ℃, 1400 ℃ and 1500 ℃, respectively. After sintered at 1400 ℃, the mass fraction of Ti3SiC2 in the ceramic product reached 92.10% with the bending strength of 172.68 MPa. When subjected to a static air environment of 1300 ℃ for 7 h, the oxidation weight gain of the ceramics gain progressively reduced with the increase of Ti3SiC2 phase content. During the oxidation process, a protective film primarily consisted of TiO2 was formed on the surface of the material, which effectively slowed down the oxygen diffusion into the interior. Air thermal shock tests at 1300℃ and residual strength assessments demonstrated that the flexural strength of all materials decreased with the increase of thermal shock cycles. Nevertheless, the thermal shock resistance and residual strength of the samples were enhanced with the increase of Ti3SiC2 phase content. After 30 thermal shock cycles, the sample with the highest Ti3SiC2 phase content experienced a 30.66% weight loss and retained a bending strength of 120.18 MPa, primarily due to the layered structure of Ti3SiC2 significantly extending the crack propagation path and its superior oxidation performance.

Key words: Ti3SiC2, pressureless sintering, oxidation performance, thermal shock

中图分类号: