无机材料学报 ›› 2023, Vol. 38 ›› Issue (8): 954-962.DOI: 10.15541/jim20220711 CSTR: 32189.14.10.15541/jim20220711
所属专题: 【能源环境】超级电容器,锂金属电池,钠离子电池和水系电池(202409); 【能源环境】超级电容器(202409)
徐州(), 刘宇轩, 池俊霖, 张婷婷, 王姝越, 李伟, 马春慧, 罗沙(
), 刘守新(
)
收稿日期:
2022-11-28
修回日期:
2023-02-25
出版日期:
2023-03-24
网络出版日期:
2023-03-24
通讯作者:
罗 沙, 工程师. E-mail: luo.sha.85@163.com;作者简介:
徐 州(1993-), 男, 博士研究生. E-mail: xuzhou0194@126.com
基金资助:
XU Zhou(), LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha(
), LIU Shouxin(
)
Received:
2022-11-28
Revised:
2023-02-25
Published:
2023-03-24
Online:
2023-03-24
Contact:
LUO Sha, engineer. E-mail: luo.sha.85@163.com;About author:
XU Zhou (1993-), male, PhD candidate. E-mail: xuzhou0194@126.com
Supported by:
摘要:
以木糖为碳源, 利用嵌段共聚物聚环氧乙烷-聚环氧丙烷-聚环氧乙烷 (P123)/十二烷基硫酸钠(SDS)混合乳液构筑微反应器, 水热炭化制备马蹄形中空多孔炭。研究表明木糖在微反应器与溶液界面发生水热反应, 160 ℃水热条件下P123的亲水聚环氧乙烷嵌段(PEO)亲水性下降并向乳液内部增溶, 使乳液逐渐润胀和破裂。P123/SDS质量比会影响微反应器的完整度, 而水热时间可以调控微反应器的开口角度和空腔直径。开放性空腔能储存更多电荷和离子并缩短传输距离, 使多孔炭的比电容和能量密度增大且与空腔直径呈正相关关系。当P123/SDS质量比为1.25 : 1、水热时间为12 h时, 马蹄形中空多孔炭的开口角度(63°)和空腔直径(80 nm)最大、电化学性能最佳, 在6 mol·L-1 KOH三电极体系中电流密度1 A·g-1时比电容达292 F·g-1; 在两电极体系中电流密度0.2 A·g-1时比电容达185 F·g-1, 能量密度达6.44 Wh·kg-1; 电流密度5 A·g-1时5000次充放电循环后电容保持率达94.83%。
中图分类号:
徐州, 刘宇轩, 池俊霖, 张婷婷, 王姝越, 李伟, 马春慧, 罗沙, 刘守新. 双模板-水热炭化制备马蹄形中空多孔炭及其电化学性能[J]. 无机材料学报, 2023, 38(8): 954-962.
XU Zhou, LIU Yuxuan, CHI Junlin, ZHANG Tingting, WANG Shuyue, LI Wei, MA Chunhui, LUO Sha, LIU Shouxin. Horseshoe-shaped Hollow Porous Carbon: Synthesis by Hydrothermal Carbonization with Dual-template and Electrochemical Property[J]. Journal of Inorganic Materials, 2023, 38(8): 954-962.
图1 不同P123/SDS质量比炭前驱体的(a~f)SEM和(g~l)TEM照片
Fig. 1 (a-f) SEM and (g-l) TEM images of carbon precursors with different P123/SDS mass ratios (a, g) HNS-S-12; (b, h) HNS-0.625-12; (c, i) HNS-1.25-12; (d, j) HNS-2.5-12; (e, k) HNS-5-12; (f, l) HNS-P-12
图2 不同水热时间炭前驱体的(a~e)SEM和(f~j)TEM照片
Fig. 2 (a-e) SEM and (f-j) TEM images of carbon precursors after hydrothermal treatment for different periods (a, f) HNS-1.25-3; (b, g) HNS-1.25-8; (c, h) HNS-1.25-12; (d, i) HNS-1.25-18; (e, j) HNS-1.25-24
Sample | Average diameter of particle/nm | Average diameter of inner cavity/nm | Average diameter of carbon wall/nm | Opening angle/(°) | pH dependence |
---|---|---|---|---|---|
HNS-1.25-0 | - | - | - | - | 7.27 |
HNS-1.25-3 | - | - | - | - | 3.53 |
HNS-1.25-8 | 110 | 60 | 25 | 48 | 3.35 |
HNS-1.25-12 | 140 | 80 | 30 | 63 | 3.32 |
HNS-1.25-18 | 230 | 40 | 95 | 39 | 3.25 |
HNS-1.25-24 | 300 | 0 | 150 | 0 | 3.18 |
表1 不同样品的平均粒径、空腔直径、壁厚、开口角度和pH变化
Table 1 Average diameters of particles, inner cavities, carbon walls, opening angles, and pH dependence of different samples
Sample | Average diameter of particle/nm | Average diameter of inner cavity/nm | Average diameter of carbon wall/nm | Opening angle/(°) | pH dependence |
---|---|---|---|---|---|
HNS-1.25-0 | - | - | - | - | 7.27 |
HNS-1.25-3 | - | - | - | - | 3.53 |
HNS-1.25-8 | 110 | 60 | 25 | 48 | 3.35 |
HNS-1.25-12 | 140 | 80 | 30 | 63 | 3.32 |
HNS-1.25-18 | 230 | 40 | 95 | 39 | 3.25 |
HNS-1.25-24 | 300 | 0 | 150 | 0 | 3.18 |
图6 HNCS-1.25-8、HNCS-1.25-12、HNCS-1.25-18和HNCS- 1.25-24的(a) XPS全谱图和(b)润湿性
Fig. 6 (a) XPS total survey and (b) wettability of HNCS-1.25-8, HNCS-1.25-12, HNCS-1.25-18, and HNCS-1.25-24
图7 HNCS-1.25-12在(a) 5~100 mV∙s-1的CV曲线和(b) 1~20 A∙g-1的GCD曲线; 不同样品(c)在1~20 A∙g-1的比电容和库仑效率(插图), (d)在1 A∙g-1比电容和空腔直径关系及(e) Nyquist曲线(插图为等效电路图); (f) HNCS-1.25-12的循环稳定性能
Fig. 7 (a) CV curves at 5-100 mV∙s-1 and (b) GCD curves at 1-20 A∙g-1 of HNCS-1.25-12; (c) Specific capacitances and Coulombic efficiencies (inset) at 1-20 A∙g-1, (d) relationship between specific capacitance with diameter of cavity at 1 A∙g-1 and (e) Nyquist plots with equivalent circuit (inset) of different samples; (f) Cycling stability of HNCS-1.25-12
图S2 (a~d)HNS-1.25-12和(e~h)HNCS-1.25-12的(a, e) TEM照片和(b~d)C、(f~h)O元素映射图
Fig. S2 (a, e) TEM images and (b-d) C, (f-h) O element mappings of (a-d) HNS-1.25-12 and (e-h) HNCS-1.25-12
图S3 P123、SDS和混合乳液(P123/SDS的质量比恒定为1.25:1)在溶液中的(a)尺寸分布和Zeta电位、(b)表面张力
Fig. S3 (a) Size distribution and Zeta potential, and (b) surface tension of micelle/emulsion in H2O
图S5 HNS-1.25-12、HNCS-1.25-8、HNCS-1.25-12、HNCS-1.25-18和HNCS-1.25-24的(a) XRD谱图和(b) Raman谱图
Fig. S5 (a) XRD patterns, (b) Raman spectra of HNS-1.25-12, HNCS-1.25-8, HNCS-1.25-12, HNCS-1.25-18, and HNCS-1.25-24
图S6 HNCS-1.25-8、HNCS-1.25-12、HNCS-1.25-18和HNCS-1.25-24的(a) C1s和(b) O1s XPS高分辨率谱图
Fig. S6 (a) C1s and (b) O1s high resolution XPS spectra of HNCS-1.25-8, HNCS-1.25-12, HNCS-1.25-18 and HNCS-1.25-24
图S8 不同材料在二电极体系下的电化学性能
Fig. S8 Electrochemical performance of different materials in two-electrode system (a) CV curves at 10-100 mV∙s-1 and (b) GCD curves at 0.2-5 A∙g-1 of HNCS-1.25-12; (c) Specific capacitances and Coulombic efficiencies (inset) at 0.2-5 A∙g-1;, (d) Ragone plot with inset showing picture of lit-up LED and (e) relationship between energy density and diameter of cavity at power density of 2500 W∙kg-1 for different samples; (g) Cycling stability of HNCS-1.25-12
Sample | Specific surface area, SBET/(m2·g-1) | Micropore specific surface area, Smicro /(m2·g-1) | Ratio of micropore, Smicro/SBET | Total pore volume /(cm3·g-1) | Pore volume of micropore/(cm3·g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
HNS-1.25-12 | 9 | - | - | 0.03 | - | 11.90 |
HNCS-1.25-8 | 619 | 590 | 95.32% | 0.23 | 0.22 | 1.49 |
HNCS-1.25-12 | 611 | 581 | 95.09% | 0.23 | 0.22 | 1.52 |
HNCS-1.25-18 | 617 | 550 | 89.14% | 0.32 | 0.21 | 1.84 |
HNCS-1.25-24 | 588 | 518 | 88.10% | 0.32 | 0.20 | 1.87 |
表S1 不同样品的孔结构参数
Table S1 Textural parameters of different samples
Sample | Specific surface area, SBET/(m2·g-1) | Micropore specific surface area, Smicro /(m2·g-1) | Ratio of micropore, Smicro/SBET | Total pore volume /(cm3·g-1) | Pore volume of micropore/(cm3·g-1) | Average pore size/nm |
---|---|---|---|---|---|---|
HNS-1.25-12 | 9 | - | - | 0.03 | - | 11.90 |
HNCS-1.25-8 | 619 | 590 | 95.32% | 0.23 | 0.22 | 1.49 |
HNCS-1.25-12 | 611 | 581 | 95.09% | 0.23 | 0.22 | 1.52 |
HNCS-1.25-18 | 617 | 550 | 89.14% | 0.32 | 0.21 | 1.84 |
HNCS-1.25-24 | 588 | 518 | 88.10% | 0.32 | 0.20 | 1.87 |
Samples | Capacitance/ (F·g-1) | Current density/ (A·g-1) | Electrolyte | Ref. |
---|---|---|---|---|
NMHCSS | 240 | 0.2 | 6 mol∙L-1 KOH | [ |
HFC | 238 | 0.5 | 6 mol∙L-1 KOH | [ |
Fe2O3@Gr-CNT/NF | 114 | 1 | 2 mol∙L-1 KOH | [ |
BHPC | 187 | 0.5 | 6 mol∙L-1 KOH | [ |
ACS | 218 | 0.2 | 6 mol∙L-1 NaOH | [ |
N-MWCNTs | 184 | 0.5 | 5 mol∙L-1 KOH | [ |
SC-ZN | 263 | 0.5 | 6 mol∙L-1 KOH | [ |
PN-ECB | 265 | 0.5 | 6 mol∙L-1 NaOH | [ |
NHPC | 225 | 0.25 | 3 mol∙L-1 NaOH | [ |
BPCS | 217 | 1 | 6 mol∙L-1 KOH | [ |
rGONS | 200 | 0.5 | 6 mol∙L-1 KOH | [ |
HNCS-1.25-12 | 292 | 1 | 6 mol∙L-1 KOH | This work |
表S2 文献报道的多孔炭基材料的电容性能
Table S2 Capacitive properties of doped-carbon materials reported in literature
Samples | Capacitance/ (F·g-1) | Current density/ (A·g-1) | Electrolyte | Ref. |
---|---|---|---|---|
NMHCSS | 240 | 0.2 | 6 mol∙L-1 KOH | [ |
HFC | 238 | 0.5 | 6 mol∙L-1 KOH | [ |
Fe2O3@Gr-CNT/NF | 114 | 1 | 2 mol∙L-1 KOH | [ |
BHPC | 187 | 0.5 | 6 mol∙L-1 KOH | [ |
ACS | 218 | 0.2 | 6 mol∙L-1 NaOH | [ |
N-MWCNTs | 184 | 0.5 | 5 mol∙L-1 KOH | [ |
SC-ZN | 263 | 0.5 | 6 mol∙L-1 KOH | [ |
PN-ECB | 265 | 0.5 | 6 mol∙L-1 NaOH | [ |
NHPC | 225 | 0.25 | 3 mol∙L-1 NaOH | [ |
BPCS | 217 | 1 | 6 mol∙L-1 KOH | [ |
rGONS | 200 | 0.5 | 6 mol∙L-1 KOH | [ |
HNCS-1.25-12 | 292 | 1 | 6 mol∙L-1 KOH | This work |
[1] | LIU F, CHENG Y, TAN J C, et al. Carbon nanomaterials with hollow structures: a mini-review. Frontiers in Chemistry, 2021, 9: 668336. |
[2] |
SUNDER A, KRÄMER M, HANSELMANN R, et al. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angewandte Chemie International Edition, 1999, 38(23): 3552.
DOI URL |
[3] | LIANG J, HU H, PARK H, et al. Construction of hybrid bowl-like structures by anchoring NiO nanosheets on flat carbon hollow particles with enhanced lithium storage properties. Energy & Environmental Science, 2015, 8(6): 1707. |
[4] |
LIANG J, YU X Y, ZHOU H, et al. Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angewandte Chemie International Edition, 2014, 53(47): 12803.
DOI URL |
[5] |
ZHANG W, CHENG R R, BI H H, et al. A review of porous carbons produced by template methods for supercapacitor applications. New Carbon Materials, 2021, 36(1): 69.
DOI URL |
[6] |
ZHAO R G, WANG H, ZHANG X Y, et al. Hierarchically porous three-dimensional (3D) carbon nanorod networks with a high content of FeNx sites for efficient oxygen reduction reaction. Langmuir, 2022, 38(37): 11372.
DOI URL |
[7] | YU L, YU X Y, LOU X W. The design and synthesis of hollow micro-/nanostructures: present and future trends. Advanced Materials, 2018, 30(38): 1800939. |
[8] |
KAKANI V, RAMESH S, YADAV H M, et al. Hydrothermal synthesis of CuO@MnO2 on nitrogen-doped multiwalled carbon nanotube composite electrodes for supercapacitor applications. Scientific Reports, 2022, 12(1): 12951.
DOI |
[9] | LACHOS-PEREZ D, TORRES-MAYANGA P C, ABAIDE E R, et al. Hydrothermal carbonization and liquefaction: differences, progress, challenges, and opportunities. Bioresource Technology, 2022, 343: 126084. |
[10] | KAN Y N, CHEN B W, ZHAI S C, et al. Chemical compositions of carbon sources affected on surface morphology and spectral properties of the synthetic carbon microspheres. Spectroscopy and Spectral Analysis, 2020, 40(10): 3153. |
[11] |
KANG S M, LI X L, FAN J, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal. Industrial & Engineering Chemistry Research, 2012, 51(26): 9023.
DOI URL |
[12] |
WANG S P, HAN C L, WANG J, et al. Controlled synthesis of ordered mesoporous carbohydrate-derived carbons with flower-like structure and N-doping by self-transformation. Chemistry of Materials, 2014, 26(23): 6872
DOI URL |
[13] |
XIONG S Q, FAN J C, WANG Y, et al. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. Journal of Materials Chemistry A, 2017, 5(34): 18242.
DOI URL |
[14] |
YANG Z C, TANG C H, GONG H, et al. Hollow spheres of nanocarbon and their manganese dioxide hybrids derived from soft template for supercapacitor application. Journal of Power Sources, 2013, 240: 713.
DOI URL |
[15] |
WU M B, AI P P, TAN M H, et al. Synthesis of starch-derived mesoporous carbon for electric double layer capacitor. Chemical Engineering Journal, 2014, 245: 166.
DOI URL |
[16] |
WU Q, LI W, TAN J, et al. Flexible cage-like carbon spheres with ordered mesoporous structures prepared via a soft-template/ hydrothermal process from carboxymethylcellulose. RSC Advances, 2014, 4(16): 61518.
DOI URL |
[17] | XU Z, LIU Y X, XU C. F, et al. B-doped hierarchical porous carbon spheres prepared by xylose-soft template hydrothermal strategy for enhancing electrochemical property. Chinese Journal of Inorganic Chemistry, 2022, 38(10): 2006. |
[18] |
LIU H T, XU Y J, WANG J J, et al. A triple template of P123/SDS/CS with simultaneously enhanced utilization efficiency of P123 and crystal seeds. Journal of Alloys and Compounds, 2018, 765: 907.
DOI URL |
[19] |
WU Q, LI W, TAN J, et al. Hydrothermal carbonization of carboxymethylcellulose: one-pot preparation of conductive carbon microspheres and water-soluble fluorescent carbon nanodots. Chemical Engineering Journal, 2015, 266: 112.
DOI URL |
[20] |
WU Q, LI W, TAN J, et al. Hydrothermal synthesis of magnetic mesoporous carbon microspheres from carboxymethylcellulose and nickel acetate. Applied Surface Science, 2015, 332: 354.
DOI URL |
[21] |
TITIRICI M M, ANTONIETTI M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chemical Society Reviews, 2010, 39(1): 103.
DOI URL |
[22] |
WU L M, TONG D S, LI C S, et al. Insight into formation of montmorillonite-hydrochar nanocomposite under hydrothermal conditions. Applied Clay Science, 2016, 119: 116.
DOI URL |
[23] |
WANG G H, HILGERT J, RICHTER F H, et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nature Materials, 2014, 13(3): 293.
DOI |
[24] | XING Z B, GUO Z J, ZHANG Y W, et al. Regulation of SDS on the surface charge density of SB3-12 micelles and its effect on drug dissolution. Acta Physico-Chimica Sinica, 2020, 36(6): 1906006. |
[25] |
MONDAL R, GHOSH N, PAUL B K, et al. Triblock-copolymer- assisted mixed-micelle formation results in the refolding of unfolded protein. Langmuir, 2018, 34(3): 896.
DOI URL |
[26] |
HOSSAIN M K, HINATA S, LOPEZ-QUINTELA A, et al. Phase behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) block copolymer in water and water-C12EO5 systems. Journal of Dispersion Science and Technology, 2003, 24(3/4): 411.
DOI URL |
[27] |
KANCHARLA S, BEDROV D, TSIANOU M, et al. Structure and composition of mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined by small- angle neutron scattering with contrast variation. Journal of Colloid and Interface Science, 2022, 609: 456.
DOI URL |
[28] | YIN J, ZHANG W L, ALHEBSHI N A, et al. Synthesis strategies of porous carbon for supercapacitor applications. Small Methods, 2020, 4(3): 1900853. |
[29] |
LONG S J, SI C D. Integrated gas expansion and activation strategy to prepare shaddock peel-derived nitrogen doped honeycomb carbon for high performance supercapacitor. Journal of Porous Materials, 2022, 29(5): 1639.
DOI |
[30] |
ZHANG F M, XIAO X S, GANDLA D, et al. Bio-derived carbon with tailored hierarchical pore structures and ultra-high specific surface area for superior and advanced supercapacitors. Nanomaterials, 2022, 12(1): 27.
DOI URL |
[31] | LIU X, SONG P P, HOU J H, et al. Revealing the dynamic formation process and mechanism of hollow carbon spheres: from bowl to sphere. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2797. |
[32] | LIN H H, TAN Z X, YANG J W, et al. Highly porous carbon material from polycyclodextrin for high-performance supercapacitor electrode. Journal of Energy Storage, 2022, 53: 105036. |
[33] |
YEGANEH F, CHIEWCHAN N, CHONKAEW W. Hydrothermal pretreatment of biomass-waste-garlic skins in the cellulose nanofiber production process. Cellulose, 2022, 29(4): 2333.
DOI |
[34] | FU J Q, BAI L, CHI M S, et al. Study on the evolution pattern of the chemical structure of Fenton pretreated lignin during hydrothermal carbonization. Journal of Environmental Chemical Engineering, 2022, 10(2): 107184. |
[35] | JIA X, LI L C, TENG J W, et al. Glycation of rice protein and D-xylose pretreated through hydrothermal cooking-assisted high hydrostatic pressure: focus on the structural and functional properties. LWT, 2022, 160: 113194. |
[36] |
QIU W L, LEISEN J E, LIU Z Y, et al. Key features of polyimide- derived carbon molecular sieves. Angewandte Chemie International Edition, 2021, 60(41): 22322.
DOI URL |
[37] | MA L N, BI Z J, ZHANG W, et al. Synthesis of a Three-dimensional interconnected oxygen-, boron-, nitrogen-, and phosphorus tetratomic-doped porous carbon network as electrode material for the construction of a superior flexible supercapacitor. ACS Applied Materials & Interfaces, 2020, 12(41): 46170. |
[38] |
DU J, ZHANG Y, LÜ H J, et al. N/B-co-doped ordered mesoporous carbon spheres by ionothermal strategy for enhancing supercapacitor performance. Journal of Colloid and Interface Science, 2021, 587: 780.
DOI URL |
[39] | PHOLAUYPHON W, BULAKHE R N, MANYAM J, et al. High- performance supercapacitors using carbon dots/titanium dioxide composite electrodes and carbon dot-added sulfuric acid electrolyte. Journal of Electroanalytical Chemistry, 2022, 910: 116177. |
[40] |
ZHANG J P, NING X A, LI D P, et al. Nitrogen-enriched micro-mesoporous carbon derived from polymers organic frameworks for high-performance capacitive deionization. Journal of Environmental Sciences, 2022, 111: 282.
DOI URL |
[41] | ZHANG Y, LIU K Y, ZHANG W, et al. Electrochemical performance of electrodes in MnO2 supercapacitor. Acta Chimica Sinica, 2008, 66(8): 909. |
[42] |
HU Y R, DONG X L, HOU L, et al. Electrochemical oxidation of 2D B, N-codoped carbon nanosheets to improve their pseudo- capacitance. New Carbon Materials, 2021, 36(6): 1109.
DOI URL |
[43] |
ZHOU Y, XIAO N, QIU J S, et al. Preparation of carbon microfibers from coal liquefaction residue. Fuel, 2008, 87: 3474.
DOI URL |
[44] |
LIU C L, DONG W S, CAO G P, et al. Influence of KOH followed by oxidation pretreatment on the electrochemical performance of phenolic based activated carbon fibers. Journal of Electroanalytical Chemistry, 2007, 611: 225.
DOI URL |
[45] | CHEN Y, MA Y N, HUANG J D, et al. Fabricating dual redox electrolyte to achieve ultrahigh specific capacitance and reasonable Coulombic efficiency for biomass activated carbon. Electrochimica Acta, 2022, 414: 140215. |
[46] |
WANG M, YANG J, JIA K L, et al. Boosting supercapacitor performance of graphene by coupling with nitrogen-doped hollow carbon frameworks. Chemistry-A European Journal, 2020, 26: 2897.
DOI URL |
[47] |
LU W J, HAO L N, WANG Y W. Highly active N, S co-doped ultramicroporous carbon for high-performance supercapacitor electrodes. Micromachines, 2022, 13(6): 905.
DOI URL |
[48] |
JIAO J C, ZHU Y X, PENG X W, et al. Preparation of high capacitive performance porous carbon assisted by sodium dodecyl sulfate. Acta Chimica Sinica, 2021, 79: 778.
DOI URL |
[49] |
HU X, LIU H B, XIA X H, et al. Polyaniline-carbon pillared graphene composite: preparation and electrochemical performance. Journal of Inorganic Materials, 2019, 34(2): 145.
DOI URL |
[1] | 薛轶凡, 李玮洁, 张中伟, 庞旭, 刘愚. 碳纤维布表面PyC界面相微观结构及均匀性的工艺调控[J]. 无机材料学报, 2024, 39(4): 399-408. |
[2] | 管皞阳, 张立, 荆开开, 师维刚, 王晶, 李玫, 刘永胜, 张程煜. 国产三代2.5D SiCf/SiC复合材料的界面力学性能[J]. 无机材料学报, 2024, 39(3): 259-266. |
[3] | 郝永鑫, 秦娟, 孙军, 杨金凤, 李清连, 黄贵军, 许京军. 坩埚底角形状对提拉法生长同成分铌酸锂晶体的影响[J]. 无机材料学报, 2024, 39(10): 1167-1174. |
[4] | 丁统顺, 丰平, 孙学文, 单沪生, 李琪, 宋健. Fmoc-FF-OH钝化钙钛矿薄膜及其太阳能电池性能研究[J]. 无机材料学报, 2023, 38(9): 1076-1082. |
[5] | 胡忠良, 傅赟天, 蒋蒙, 王连军, 江莞. Nb/Mg3SbBi界面层热稳定性研究[J]. 无机材料学报, 2023, 38(8): 931-937. |
[6] | 沈轩逸, 马沁, 薛玉冬, 廖春景, 朱敏, 张翔宇, 杨金山, 董绍明. 复合界面层对SiCf/SiC复合材料力学损伤行为的影响[J]. 无机材料学报, 2023, 38(8): 917-922. |
[7] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[8] | 穆宏赫, 王鹏飞, 施宇峰, 张中晗, 武安华, 苏良碧. 热交换坩埚下降法制备大尺寸氟化铈晶体的热场设计与优化[J]. 无机材料学报, 2023, 38(3): 288-295. |
[9] | 孙晗, 李文俊, 贾子璇, 张岩, 殷利迎, 介万奇, 徐亚东. ACRT技术对大尺寸ZnTe晶体溶液法制备及其性能影响[J]. 无机材料学报, 2023, 38(3): 310-315. |
[10] | 华思恒, 杨东旺, 唐昊, 袁雄, 展若雨, 徐卓明, 吕嘉南, 肖娅妮, 鄢永高, 唐新峰. n型Bi2Te3基材料表面处理对热电单元性能的影响[J]. 无机材料学报, 2023, 38(2): 163-169. |
[11] | 谭淑雨, 刘晓宁, 毕志杰, 万勇, 郭向欣. 正极包覆与界面修饰: 双策略改善聚氧化乙烯固态电解质对高电压正极稳定性[J]. 无机材料学报, 2023, 38(12): 1466-1474. |
[12] | 孙铭, 邵溥真, 孙凯, 黄建华, 张强, 修子扬, 肖海英, 武高辉. RGO/Al复合材料界面性质第一性原理研究[J]. 无机材料学报, 2022, 37(6): 651-659. |
[13] | 徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690. |
[14] | 田俊亭, 李晓兵, 丁伟艳, 聂生东, 梁柱. 软模板法制备高频超声换能器用1-3复合压电材料[J]. 无机材料学报, 2022, 37(5): 507-512. |
[15] | 李婷婷, 张阳, 陈加航, 闵宇霖, 王久林. 锂硫电池S@pPAN正极用柔性黏结剂研究[J]. 无机材料学报, 2022, 37(2): 182-188. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||