无机材料学报

• 研究论文 •    

ZrB2-HfSi2复相陶瓷显微组织及其核-周结构形成机制

魏志帆, 陈国清, 祖宇飞, 刘渊, 李明浩, 付雪松, 周文龙   

  1. 大连理工大学 材料科学与工程学院, 大连 116085
  • 收稿日期:2025-02-17 修回日期:2025-03-20
  • 作者简介:魏志帆(1993–), 男, 博士. E-mail: 424380067@qq.com
  • 基金资助:
    国家自然科学基金(52075073)

Microstructure of ZrB2-HfSi2 Ceramics and its Core-rim Structure Formation Mechanism

WEI Zhifan, CHEN Guoqing, ZU Yufei, LIU Yuan, LI Minghao, FU Xuesong, ZHOU Wenlong   

  1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
  • Received:2025-02-17 Revised:2025-03-20
  • About author:Wei Zhifan (1993–), male, PhD. E-mail: 424380067@qq.com
  • Supported by:
    National Natural Science Foundation of China (52075073)

摘要: 近年来,ZrB₂作为超高温陶瓷的代表性材料,已成为新一代空天飞行器热端部件重要的候选材料体系。然而,其实际应用受限于材料制备以及复杂构件的加工难题。为此本研究通过引入HfSi₂作为烧结助剂,优化ZrB₂基超高温陶瓷的烧结工艺,重点解决传统ZrB₂基陶瓷因较低的扩散系数而导致致密化困难的难题。研究聚焦于核-周结构硼化物的形成机制以及其对ZrB2-HfSi2陶瓷致密化的辅助作用。研究采用1600 ℃热压烧结成功制备了ZrB2-HfSi₂陶瓷,结果发现:在烧结过程中,HfSi₂相的软化能够有效填充颗粒间隙,从而实现ZrB2-HfSi2陶瓷的低温烧结。同时,在保温阶段,Hf与Zr原子通过溶解-再沉淀机制形成具有核-周结构的ZrB2/(Zr,Hf)B2,该过程促进了烧结粉体之间物质交换,从而加速了ZrB2-HfSi2陶瓷的致密化。此外,该结构主要由核心ZrB₂及其周边(Zr,Hf)B₂组成,具有完全共格界面(P6/mmm六方结构),晶格失配率低(<5%),界面稳定。ZrB2-HfSi2陶瓷的抗压强度、显微硬度以及断裂韧性分别为1333 MPa,15.86 GPa以及2.01 MPa·m1/2。该陶瓷主要表现为典型的沿晶断裂形式,只有少数解理面上出现核-周结构特征。本研究为实现超高温陶瓷低温烧结提供重要参考价值。

关键词: ZrB2-HfSi2陶瓷, HfSi2烧结助剂, 致密化, 核-周结构, 共格界面

Abstract: In recent years, ZrB₂, as a representative material of ultrahigh temperature ceramics, has become an important candidate material system for components of new generation aerospace vehicles. However, its practical application is limited by difficulties in material preparation and processing of complex components. This study aims to optimize the sintering process of ZrB2-based ultra-high temperature ceramics (UHTCs) by introducing HfSi₂ as a sintering aid, specifically addressing the challenge of densification caused by the low intrinsic diffusion coefficient of traditional ZrB₂ ceramics. The research focuses on elucidating the formation mechanism of core-rim structured borides and their role in enhancing the densification of ZrB2-HfSi₂ceramics. Dense ZrB2-HfSi₂ceramics were successfully fabricated via hot-press sintering at 1600 °C. The results reveal that the softening of the HfSi₂phase during sintering effectively fills interparticle gaps, thereby facilitating low-temperature densification. Furthermore, during the holding stage, interdiffusion of Hf and Zr atoms through a dissolution-reprecipitation mechanism facilitates the formation of a core-rim structured ZrB2/(Zr,Hf)B2 composite. This core-rim structure consists of ZrB₂ core encased by a (Zr,Hf)B₂ rim, characterized by a fully coherent interface (hexagonal P6/mmm symmetry) with low lattice mismatch (<5%), ensuring interfacial stability. The ZrB2-HfSi₂ ceramic exhibits a compressive strength of 1333 MPa, Vickers hardness of 15.86 GPa, and fracture toughness of 2.01 MPa·m¹/². The ZrB2-HfSi₂ ceramic demonstrates typical intergranular fracture behavior, with only a limited number of cleavage planes displaying core-rim structural features. These findings provide critical insights into the low-temperature sintering of UHTCs and underscore the potential of core-rim structures in advancing the preparation of high-performance ceramics.

Key words: ZrB2-HfSi2 ceramics, HfSi2 sintering aid, densification, core-rim structures, coherent interface

中图分类号: