无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 259-266.DOI: 10.15541/jim20230352 CSTR: 32189.14.10.15541/jim20230352
管皞阳(), 张立, 荆开开, 师维刚, 王晶, 李玫, 刘永胜, 张程煜(
)
收稿日期:
2023-08-02
修回日期:
2023-10-12
出版日期:
2024-03-20
网络出版日期:
2023-10-15
通讯作者:
张程煜, 教授. E-mail: cyzhang@nwpu.edu.cn作者简介:
管皞阳(1999-), 男, 硕士研究生. E-mail: guanhaoyang@mail.nwpu.edu.cn
基金资助:
GUAN Haoyang(), ZHANG Li, JING Kaikai, SHI Weigang, WANG Jing, LI Mei, LIU Yongsheng, ZHANG Chengyu(
)
Received:
2023-08-02
Revised:
2023-10-12
Published:
2024-03-20
Online:
2023-10-15
Contact:
ZHANG Chengyu, professor. E-mail: cyzhang@nwpu.edu.cnAbout author:
GUAN Haoyang (1999-), male, Master candidate. E-mail: guanhaoyang@mail.nwpu.edu.cn
Supported by:
摘要:
连续碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是下一代航空发动机的关键结构材料, 其界面性能是决定材料力学性能的重要因素之一。为此, 本研究表征了国产三代2.5D SiCf/SiC的界面性能, 并探究其与材料拉伸性能的关系。利用拉伸加/卸载过程中的迟滞特性定量分析了2.5D SiCf/SiC中各组元残余应力和界面滑动应力(IFSS), 根据断口拔出纤维的断裂镜面半径得到了纤维就位强度(
中图分类号:
管皞阳, 张立, 荆开开, 师维刚, 王晶, 李玫, 刘永胜, 张程煜. 国产三代2.5D SiCf/SiC复合材料的界面力学性能[J]. 无机材料学报, 2024, 39(3): 259-266.
GUAN Haoyang, ZHANG Li, JING Kaikai, SHI Weigang, WANG Jing, LI Mei, LIU Yongsheng, ZHANG Chengyu. Interfacial Mechanical Properties of the Domestic 3rd Generation 2.5D SiCf/SiC Composite[J]. Journal of Inorganic Materials, 2024, 39(3): 259-266.
图1 2.5D SiCf/SiC拉伸试样的增强体结构和试样形状
Fig. 1 Fabric preform and dimensions of 2.5D SiCf/SiC tensile specimen (a) Schematic of 2.5D woven preform; (b) Dimensions of the tensile specimen(in mm)
图3 2.5D SiCf/SiC加/卸载应力-应变曲线(a)及典型迟滞回环图示(b)
Fig. 3 Stress-strain curves during the loading/unloading test of 2.5D SiCf/SiC (a) and schematic of typical hysteresis loop (b) Colorful figures are available on website
σp/MPa | σtr/MPa | E*/GPa | δεmax/% | εp/% |
---|---|---|---|---|
200 | 72 | 188 | 2.67×10-3 | 0.110 |
220 | 96 | 160 | 4.10×10-3 | 0.136 |
240 | 100 | 139 | 6.18×10-3 | 0.167 |
260 | 110 | 120 | 1.06×10-2 | 0.205 |
表1 加/卸载拉伸实验数据和计算的相关参数
Table 1 Experimental results and related parameters from the loading/unloading cycle test
σp/MPa | σtr/MPa | E*/GPa | δεmax/% | εp/% |
---|---|---|---|---|
200 | 72 | 188 | 2.67×10-3 | 0.110 |
220 | 96 | 160 | 4.10×10-3 | 0.136 |
240 | 100 | 139 | 6.18×10-3 | 0.167 |
260 | 110 | 120 | 1.06×10-2 | 0.205 |
图6 加/卸载过程中各参数的变化
Fig. 6 Variation of parameters during loading/unloading process (a)Variation of δεmax with σp and (b) Variation of εp with ${{\sigma }_{\text{p}}}$
Fiber | Materials | Weaving method | Properties of interface | Ref. | |||
---|---|---|---|---|---|---|---|
Interface | Matrix | ISS/MPa | IFSS/MPa | Gi/(J·m-2) | |||
Cansas III | BN | CVI | 2.5D | 28 (Push-in) | 56 (Hysteresis loops) (Morphology) | 2.7 (Push-in) | This work |
Nicalon | BN | CVD | Mini composite | - | 8-15 (Push out) | 2-8 (Push-out) | [ |
Hi-Nicalon | BN | MI | 2D | - | 5-25 (Hysteresis loops) | - | [ |
Tyranno ZMI | BN | CVI | 2D | 93 (Push-in) | - | 9.2 (Push-in) | [ |
Hi-Nicalon S | PyC | CVI | Mini composite | - | 10 (Hysteresis loops) | - | [ |
表2 SiCf/SiC的界面性能对比
Table 2 Interfacial properties comparison of SiCf/SiC
Fiber | Materials | Weaving method | Properties of interface | Ref. | |||
---|---|---|---|---|---|---|---|
Interface | Matrix | ISS/MPa | IFSS/MPa | Gi/(J·m-2) | |||
Cansas III | BN | CVI | 2.5D | 28 (Push-in) | 56 (Hysteresis loops) (Morphology) | 2.7 (Push-in) | This work |
Nicalon | BN | CVD | Mini composite | - | 8-15 (Push out) | 2-8 (Push-out) | [ |
Hi-Nicalon | BN | MI | 2D | - | 5-25 (Hysteresis loops) | - | [ |
Tyranno ZMI | BN | CVI | 2D | 93 (Push-in) | - | 9.2 (Push-in) | [ |
Hi-Nicalon S | PyC | CVI | Mini composite | - | 10 (Hysteresis loops) | - | [ |
[1] | 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展. 材料导报, 2001, 15(1): 45. |
[2] | 丁冬海, 周万城, 张标, 等. 连续SiC纤维增韧SiC基体复合材料研究进展. 硅酸盐通报, 2011, 30(2): 356. |
[3] |
GRONDAHL C M, TSUCHIYA T. Performance benefit assessment of ceramic components in an MS9001FA gas turbine. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2001, 123(3): 513.
DOI URL |
[4] | 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨. 复合材料学报, 2007(2): 1. |
[5] |
SUN J J, LIU W, LV X X, et al. Characterization of BN interface and its effect on the mechanical behavior of SiCf/SiC composites. Vacuum, 2023, 211: 111918.
DOI URL |
[6] |
LIU Y, CHAI N, QIN H, et al. Tensile fracture behavior and strength distribution of SiCf/SiC composites with different SiBN interface thicknesses. Ceramics International, 2015, 41(1, Part B): 1609.
DOI URL |
[7] | 朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制. 复合材料学报, 2023, 40(1): 464. |
[8] |
RUGG K L, TRESSLER R E, LAMON J, et al. Interfacial behavior of microcomposites during creep at elevated temperatures. Journal of the European Ceramic Society, 1999, 19(13): 2297.
DOI URL |
[9] |
MARSHALL D B. Analysis of fiber debonding and sliding experiments in brittle matrix composites. Acta Metallurgica et Materialia, 1992, 40(3): 427.
DOI URL |
[10] |
MARSHALL D B, OLIVER W C. Measurement of interfacial mechanical-properties in fiber-reinforced ceramic matrix. Journal of the American Ceramic Society, 1987, 70(8): 542.
DOI URL |
[11] |
HSUEH C. Evaluation of interfacial properties of fiber-reinforced ceramic composites using a mechanical properties microprobe. Journal of the American Ceramic Society, 1993, 76(12): 3041.
DOI URL |
[12] |
EVANS A G, DOMERGUE J M, VAGAGGINI E. Methodology for relating the tensile constitutive behavior of ceramic-matrix composites to constituent properties. Journal of the American Ceramic Society, 1994, 77(6): 1425.
DOI URL |
[13] |
WANG Y Q, ZHANG L T, CHENG L F, et al. Characterization of tensile behavior of a two-dimensional woven carbon/silicon carbide composite fabricated by chemical vapor infiltration. Materials Science and Engineering: A, 2008, 497(1/2): 295.
DOI URL |
[14] | LIU S H, ZHANG L T, YIN X W, et al. Proportional limit stress and residual thermal stress of 3D SiC/SiC composite. Journal of Materials Science & Technology, 2014, 30(10): 959. |
[15] |
JIAO G Q, WANG B. Effects of interface properties on tensile strength of ceramic matrix composites. Journal of Inorganic Materials, 2009, 24(5): 919.
DOI URL |
[16] |
REBILLAT F, LAMON J, NASLAIN R, et al. Interfacial bond strength in SiC/C/SiC composite materials, as studied by single- fiber push-out tests. Journal of the American Ceramic Society, 1998, 81(4): 965.
DOI URL |
[17] | 于海蛟. 多层界面制备、表征及其对SiCf/SiC复合材料性能的影响. 长沙: 国防科技技术大学博士论文, 2011. |
[18] |
SAUDER C, BRUSSON A, LAMON J. Influence of interface characteristics on the mechanical properties of Hi-Nicalon type-S or Tyranno-SA3 fiber-reinforced SiC/SiC minicomposites. International Journal of Applied Ceramic Technology, 2010, 7(3): 291.
DOI URL |
[19] |
DOMERGUE J M, HEREDIA F E, EVANS A G. Hysteresis loops and the inelastic deformation of 0/90 ceramic matrix composites. Journal of the American Ceramic Society, 1996, 79(1): 161.
DOI URL |
[20] | Materials, American Society for Testing. ASTM STP1309. West Con Shohocken: ASTM Int’l, 1997. |
[21] |
VAGAGGINI E, DOMERGUE J M, EVANS A G. Relationships between hysteresis measurements and the constituent properties of ceramic-matrix composites I: theory. Journal of the American Ceramic Society, 1995, 78(10): 2709.
DOI URL |
[22] | VILLENEUVE J F, NASLAIN R. Longitudinal/radial thermal expansion and poission ratio of some ceramic fibres as measured by transmission electron microscopy. Composites Science&Technology, 1993, 49(1): 89. |
[23] |
HUTCHINSON J W, JENSEN H M. Models of fiber debonding and pullout in brittle composites with friction. Mechanics of Materials, 1990, 9(2): 139.
DOI URL |
[24] |
RODRÍGUEZ M, MOLINA-ALDAREGUÍA J M, GONZÁLEZ C, et al. A methodology to measure the interface shear strength by means of the fiber push-in test. Composites Science and Technology, 2012, 72(15): 1924.
DOI URL |
[25] |
MOLINA-ALDAREGUI´A J M, RODRIGUEZ M, GONZA´LEZ C, et al. An experimental and numerical study of the influence of local effects on the application of the fibre push-in tests. Philosophical Magazine, 2011, 91: 1293.
DOI URL |
[26] |
KUNTZ M, GRATHWOHL G. Advanced evaluation of push-in data for the assessment of fiber reinforced ceramic matrix composites. Advanced Engineering Materials, 2001, 3(6): 371.
DOI URL |
[27] | DING J X, MA X K, FAN X M, et al. Failure behavior of interfacial domain in SiC-matrix based composites. Journal of Materials Science & Technology, 2021, 88: 1. |
[28] |
CURTIN W A. In-situ fiber strengths in ceramic-matrix composites from fracture mirrors. Journal of the American Ceramic Society, 1994, 77(4): 1075.
DOI URL |
[29] |
THOULESS M D, SBAIZERO O, SIGL L S, et al. Effect of interface mechanical properties on pullout in a SiC-fiber-reinforced lithium aluminum silicate glass-ceramic. Journal of the American Ceramic Society, 1989, 72(4): 517.
DOI URL |
[30] |
AVESTON J, KELLY A. Theory of multiple fracture of fibrous composites. Journal of Materials Science, 1973, 8(3): 352.
DOI URL |
[31] |
CHRISTENSEN M R, LO K H. Solutions for effective shear proper ties in 3 phase sphere and cylinder. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315.
DOI URL |
[32] |
GUO S, KAGAWA Y. Tensile fracture behavior of continuous SiC fiber-reinforced SiC matrix composites at elevated temperatures and correlation to in situ constituent properties. Journal of the European Ceramic Society, 2002, 22(13): 2349.
DOI URL |
[33] |
REBIlAT F, LAMON J, GUETTE A. The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Materialia, 2000, 48(18/19): 4609.
DOI URL |
[34] | DICARLO J A, YUN H M, MORSCHER G N, et al. SiC/SiC composites for 1200 °C and above// NAROTTAM P B.Handbook of Ceramic Composites, Boston, MA: Springer, 2005: 77-98. |
[1] | 马永杰, 刘永胜, 关康, 曾庆丰. CH4+C2H5OH+Ar体系热解的气相动力学研究[J]. 无机材料学报, 2024, 39(11): 1235-1244. |
[2] | 丁宁宁, 孙建华, 韦旭, 孙丽霞. 对氨基苯磺酸修饰MoO3/PPy复合材料室温下对氨气的监测[J]. 无机材料学报, 2024, 39(11): 1245-1253. |
[3] | 周云凯, 刁亚琪, 王明磊, 张宴会, 王利民. 聚苯胺改性Ti3C2(OH)2抗氧化性的第一性原理计算研究[J]. 无机材料学报, 2024, 39(10): 1151-1158. |
[4] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[5] | 全文心, 余艺平, 方冰, 李伟, 王松. 管状C/SiC复合材料高温空气氧化行为与宏细观建模研究[J]. 无机材料学报, 2024, 39(8): 920-928. |
[6] | 马彬彬, 钟婉菱, 韩涧, 陈椋煜, 孙婧婧, 雷彩霞. ZIF-8/TiO2复合介观晶体的制备及光催化活性[J]. 无机材料学报, 2024, 39(8): 937-944. |
[7] | 姜灵毅, 庞生洋, 杨超, 张悦, 胡成龙, 汤素芳. C/SiC-BN复合材料的制备及氧化行为[J]. 无机材料学报, 2024, 39(7): 779-786. |
[8] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[9] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[10] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 吴军, 徐培飞, 荆瑞, 张大海, 费庆国. SiC/SiC复合材料层板低速冲击及其剩余强度试验研究[J]. 无机材料学报, 2024, 39(1): 51-60. |
[13] | 师维刚, 张超, 李玫, 王晶, 张程煜. 2D-SiCf/SiC复合材料层间I型断裂试验及表征[J]. 无机材料学报, 2024, 39(1): 45-50. |
[14] | 陈海燕, 唐志鹏, 尹良君, 张林博, 徐鑫. CIPs@Mn0.8Zn0.2Fe2O4-CNTs复合材料低频吸波性能研究[J]. 无机材料学报, 2024, 39(1): 71-80. |
[15] | 郭凌翔, 唐颖, 黄世伟, 肖博澜, 夏东浩, 孙佳. C/C复合材料高熵氧化物涂层抗烧蚀性能[J]. 无机材料学报, 2024, 39(1): 61-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||