| [1] | ZHANG K Y, ZHENG Q, WANG L J, et al. Preparation and characterization of Ag2Se-based ink used for inkjet printing. Journal of Inorganic Materials, 2022,  37(10): 1109. DOI    
																																					URL
 | 
																													
																						| [2] | FAN S J, SUN T T, JIANG M, et al. In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties. Journal of Advanced Ceramics, 2022,  11(12): 1932. DOI
 | 
																													
																						| [3] | JAYACHANDRAN B, GOPALAN R, DASGUPTA T, et al. Elevated temperature behavior of CuPb18SbTe20/nano-Ag/Cu joints for thermoelectric devices. Journal of Electronic Materials, 2018,  48(2): 1276. DOI
 | 
																													
																						| [4] | LI C C, DRYMIOTIS F, LIAO L L, et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. Journal of Materials Chemistry C, 2015,  3(40): 10590. DOI    
																																					URL
 | 
																													
																						| [5] | ZHANG Q H, LIAO J C, TANG Y S, et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy & Environmental Science, 2017,  10(4): 956. | 
																													
																						| [6] | LIU W S, BAI S Q. Thermoelectric interface materials: a perspective to the challenge of thermoelectric power generation module. Journal of Materiomics, 2019,  5(3): 3216. | 
																													
																						| [7] | ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,  34(3): 279. DOI    
																																					URL
 | 
																													
																						| [8] | HU X K, ZHANG S M, ZHAO F, et al. Thermoelectric device: contact interface and interface materials. Journal of Inorganic Materials, 2019,  34(3): 269. DOI    
																																					URL
 | 
																													
																						| [9] | TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+δSb2-based layered Zintl compounds with high thermoelectric performance. Advanced Materials, 2016,  28(46): 10182. DOI    
																																					URL
 | 
																													
																						| [10] | ZHANG J W, SONG L, PEDERSEN S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nature Communications, 2017,  8: 13901. DOI
 | 
																													
																						| [11] | LIN S Q, LI A R, FU C G, et al. Research progress on crystal growth and the thermoelectric properties of Zintl phase Mg3X2(X=Sb, Bi) based materials. Journal of Inorganic Materials, 2023,  38(3): 270. DOI    
																																					URL
 | 
																													
																						| [12] | YANG Q Y, QIU P F, SHI X, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021,  36(4): 347. DOI    
																																					URL
 | 
																													
																						| [13] | FU Y T, ZHANG Q H, HU Z L, et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy & Environmental Science, 2022,  15(8): 3265. | 
																													
																						| [14] | WANG Y C, CHEN J, JIANG Y, et al. Suppression of interfacial diffusion in Mg3Sb2 thermoelectric materials through an Mg4.3Sb3Ni/Mg3.2Sb2Y0.05/Mg4.3Sb3Ni-graded structure. ACS Applied Materials & Interfaces, 2022,  14(29): 33419. | 
																													
																						| [15] | ZHU Q, SONG S W, ZHU H T, et al. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials. Journal of Power Sources, 2019,  414: 393. DOI    
																																					URL
 | 
																													
																						| [16] | LIANG Z, XU C, SHANG H, et al. High thermoelectric energy conversion efficiency of a unicouple of n-type Mg3Bi2 and p-type Bi2Te3. Materials Today Physics, 2021,  19: 100413. | 
																													
																						| [17] | BU Z, ZHANG X, HU Y, et al. An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K. Energy & Environmental Science, 2021,  14(12): 6506. | 
																													
																						| [18] | YIN L, CHEN C, ZHANG F, et al. Reliable N-type Mg3.2Sb1.5Bi0.49Te0.01/304 stainless steel junction for thermoelectric applications. Acta Materialia, 2020,  198: 25. DOI    
																																					URL
 | 
																													
																						| [19] | YANG J W, LI G D, ZHU H T, et al. Next-generation thermoelectric cooling modules based on high-performance Mg3(Bi,Sb)2 material. Joule, 2022,  6(1): 193. DOI    
																																					URL
 | 
																													
																						| [20] | CHU J, GU M, LIU R H, et al. Interfacial behaviors of p-type CeyFexCo4-xSb12/Nb thermoelectric joints. Functional Materials Letters, 2020,  13(5): 2051020. | 
																													
																						| [21] | SHAO X, LIU R H, WANG L, et al. Interfacial stress analysis on skutterudite-based thermoelectric joints under service conditions. Journal of Inorganic Materials, 2020,  35(2): 30. | 
																													
																						| [22] | AGNE M T, IMASATO K, ANAND S, et al. Heat capacity of Mg3Sb2, Mg3Bi2, and their alloys at high temperature. Materials Today Physics, 2018,  6: 83. DOI    
																																					URL
 | 
																													
																						| [23] | THIMONT Y, LOGNONÉ Q, GOUPIL C, et al. Design of apparatus for Ni/Mg2Si and Ni/MnSi1.75 contact resistance determination for thermoelectric legs. Journal of Electronic Materials, 2014,  43(6): 2023. DOI    
																																					URL
 | 
																													
																						| [24] | KUO J J, KANG S D, IMASATO K, et al. Grain boundary dominated charge transport in Mg3Sb2-based compounds. Energy & Environmental Science, 2018,  11(2): 429. | 
																													
																						| [25] | WOOD M, KUO J J, IMASATO K, et al. Improvement of low-temperature ZT in a Mg3Sb2-Mg3Bi2 solid solution via Mg-vapor annealing. Advanced Materials, 2019,  31(35): 1902337. | 
																													
																						| [26] | CHU J, HUANG J, LIU R H, et al. Electrode interface optimization advances conversion efficiency and stability of thermoelectric devices. Nature Communications, 2020,  11(1): 2723. DOI
 |