无机材料学报 ›› 2023, Vol. 38 ›› Issue (8): 931-937.DOI: 10.15541/jim20230006 CSTR: 32189.14.10.15541/jim20230006

• 研究论文 • 上一篇    下一篇

Nb/Mg3SbBi界面层热稳定性研究

胡忠良1(), 傅赟天1, 蒋蒙1, 王连军1, 江莞1,2()   

  1. 1.东华大学 材料科学与工程学院, 上海 201620
    2.东华大学 功能材料研究中心, 上海 201620
  • 收稿日期:2023-01-04 修回日期:2023-03-03 出版日期:2023-08-20 网络出版日期:2023-03-17
  • 通讯作者: 江 莞, 教授. E-mail: wanjiang@dhu.edu.cn
  • 作者简介:胡忠良(1997-), 男, 硕士研究生. E-mail: hu676789989@163.com
  • 基金资助:
    国家自然科学基金(52174343)

Thermal Stability of Nb/Mg3SbBi Interface

HU Zhongliang1(), FU Yuntian1, JIANG Meng1, WANG Lianjun1, JIANG Wan1,2()   

  1. 1. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    2. Institute of Functional Materials, Donghua University, Shanghai 201620, China
  • Received:2023-01-04 Revised:2023-03-03 Published:2023-08-20 Online:2023-03-17
  • Contact: JIANG Wan, professor. E-mail: wanjiang@dhu.edu.cn
  • About author:HU Zhongliang (1997-), male, Master candidate. E-mail: hu676789989@163.com
  • Supported by:
    National Natural Science Foundation of China(52174343)

摘要:

Zintl相Mg3(Sb,Bi)2基热电材料因在中低温区(27~500 ℃)表现出优异的热电性能而受到广泛关注。然而, 由于Mg、Sb元素比较活泼, 在长期高温服役下易与电极发生剧烈界面扩散反应, 导致热电器件的性能和服役寿命衰减。因此, 选择能有效阻挡元素剧烈互扩散并且具有低界面接触电阻率阻挡层材料至关重要。本研究首先利用热压工艺制备出300 ℃最高ZT~1.4的n型Mg3SbBi(Mg3.2SbBi0.996Se0.004)样品, 然后采用Nb粉作为扩散阻挡层一步烧结制备Mg3SbBi/Nb/Mg3SbBi“三明治”结构样品, 系统研究界面层的组成、微结构以及电阻随老化时间演变过程。加速老化实验(525 ℃/70 h; 525 ℃/170 h; 525 ℃/360 h)研究发现, Nb阻挡层中的Mg-Sb/Bi组分发生偏析, 表面产生裂纹, 抛光处理后界面连接完好, 无裂纹和孔洞, 界面扩散层厚度随老化时间延长缓慢增加至1.6 μm。Nb/Mg3SbBi界面电阻率从初始的12.9 μΩ·cm2增大到19.8、27.4和31.8 μΩ·cm2, 表明老化导致界面处元素发生微弱扩散, 但Nb阻挡层仍呈现优异的阻挡性能。因此, 在Mg3(Sb,Bi)2基热电材料体系中, 选择界面扩散微弱且结构致密的Nb作为阻挡层材料, 可以在确保连接可靠的同时有效阻挡Mg、Sb元素扩散, 从而提升Mg3(Sb,Bi)2基器件的稳定性和可靠性, 推动其在中温发电领域的应用。

关键词: Mg3(Sb,Bi)2, 扩散阻挡层, 界面稳定性, 界面电阻率

Abstract:

Zintl-phase Mg3(Sb,Bi)2-based thermoelectric (TE) compounds have attracted extensive attention due to their excellent TE performance in the medium and low temperature region (27-500 ℃). However, the reactive nature of Mg and Sb elements leads to violent interfacial diffusion reactions with electrodes during long-term high-temperature service, degrading TE performance and shortening lifespan of TE devices. Consequently, it is crucial to select diffusion barrier layer (DBL) with low interfacial contact resistivity to block violent interdiffusion of components. In this work, the n-type Mg3SbBi (Mg3.2SbBi0.996Se0.004) sample, with ZT~1.4@300 ℃, and the “sandwich” structure of Mg3SbBi/Nb/ Mg3SbBi was prepared by hot pressing sintering process. Composition and microstructure of the interfacial layer and evolution of resistance with aging time were investigated systematically. Accelerated aging results (525 ℃/70 h, 525 ℃/170 h, 525 ℃/360 h) indicated that Mg-Sb/Bi components segregation occurred in the Mg3SbBi-Nb DBL junctions, and cracks formed on the surface. However, the interfaces were well conjunctive after polishing the pellets. And the thickness of diffusion layer slowly increased to 1.6 μm after aging. Besides, resistivity of the Nb/Mg3SbBi interface slightly increased from initial 12.9 μΩ·cm2 to 19.8, 27.4 and 31.8 μΩ·cm2, respectively, indicating the Nb DBL still displaying excellent barrier properties except for the faint diffusion during aging. Based on these data, Nb is a better choice to effectively suppress the diffusion of Mg and Sb elements achieving reliable connection, to be the DBL material in the Mg3(Sb,Bi)2-based TE families. In conclusion, Nb can effectively improve the Mg3(Sb,Bi)2-based devices' thermal stability and promote the application over the medium temperature power generation.

Key words: Mg3(Sb,Bi)2, diffusion barrier layer, interface stability, interface resistivity

中图分类号: