| [1] | 
																						 
											  QI H, ZUO R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A, 2019,7(8):3971-3978.
											 											 | 
										
																													
																						| [2] | 
																						 
											  LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J. Eur. Ceram. Soc., 2018,38(15):4939-4945.
											 											 | 
										
																													
																						| [3] | 
																						 
											  ZHU L F, YAN Y K, LENG H Y,et al. Energy-storage performance of NaNbO3 based multilayered capacitors.  J. Mater. Chem. C, 2021,9(25):7950-7957.
											 											 | 
										
																													
																						| [4] | 
																						 
											  SHIMIZU H, GUO H Z, REYES-LILLO S E,et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10). Dalton. T., 2015,44(23):10763-10772.
											 											 | 
										
																													
																						| [5] | 
																						 
											  LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics. Electronic Components and Materials, 2020,39(11):55-66.
											 											 | 
										
																													
																						| [6] | 
																						 
											  MATTHIAS B T. New ferroelectric crystals. Physical Review, 1949,75(11):1771.
											 											 | 
										
																													
																						| [7] | 
																						 
											  VOUSDEN P. The non-polarity of sodium niobate. Acta. Cryst., 1952,5(5):690.
											 											 | 
										
																													
																						| [8] | 
																						 
											  ZHANG H F, YANG B, YAN H X, et al. Isolation of a ferroelectric intermediate phase in antiferroelectric dense sodium niobate ceramics. Acta Mater., 2019,179:255-261.
											 											 | 
										
																													
																						| [9] | 
																						 
											  GUO H Z, SHIMIZU H, CLIVE A RANDALL. Microstructural evolution in NaNbO3-based antiferroelectrics. J. Appl. Phys., 2015,118(17):174107.
											 											 | 
										
																													
																						| [10] | 
																						 
											  GUO H Z, SHIMIZU H, CLIVE A RANDALL. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett., 2015,107(11):112904.
											 											 | 
										
																													
																						| [11] | 
																						 
											  GAO L S, GUO H Z, ZHANG S J,et al. Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops.  Appl. Phys. Lett., 2018,112(9):092905.
											 											 | 
										
																													
																						| [12] | 
																						 
											  GUO H Z, SHIMIZU H, YOUICHI MIZUNO, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution. J. Appl. Phys., 2015,117(21):214103.
											 											 | 
										
																													
																						| [13] | 
																						 
											  GAO L S, GUO H Z, ZHANG S J, et al. A perovskite lead-free antiferroelectric xCaHfO3-( 1-x) NaNbO3 with induced double hysteresis loops at room temperature. J. Appl. Phys., 2016,120(20):204102.
											 											 | 
										
																													
																						| [14] | 
																						 
											  QI H, ZUO R Z, XIE A W, et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J. Eur. Ceram. Soc., 2019,39(13):3703-3709.
											 											 | 
										
																													
																						| [15] | 
																						 
											  YE J M, WANG G S, CHEN X F, et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics. J. Appl. Phys., 2019,114(12):122901.
											 											 | 
										
																													
																						| [16] | 
																						 
											  YE J M, WANG G S, CHEN X F,et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J. Materiomics, 2021,7(2):339-346.
											 											 | 
										
																													
																						| [17] | 
																						 
											  ZHAO L, LIU Q, ZHANG S J, et al. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification.  J. Mater. Chem. C, 2016,4(36):8380-8384.
											 											 | 
										
																													
																						| [18] | 
																						 
											  WOLSKA A, MOLAK A, LAWNICZAK-JABLONSKA K,et al. XANES Mn K edge in NaNbO3 based ceramics doped with Mn and Bi ions. Phys. Scripta, 2005,2005(T115):989-991.
											 											 | 
										
																													
																						| [19] | 
																						 
											  CHAO L M, HOU Y D, ZHENG M P,et al. NaNbO3 nanoparticles: Rapid mechanochemical synthesis and high densification behavior. J. Alloy. Compd., 2017,695:3331-3338.
											 											 | 
										
																													
																						| [20] | 
																						 
											  DONG L, DONG G X, ZHANG Q. Dielectric properties of Fe2O3-doped MgTiO3-CaTiO3 microwave ceramics. Materials Review, 2016,30(5):47-50.
											 											 | 
										
																													
																						| [21] | 
																						 
											  WANG X, REN P R, REN D,et al. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength. Ceram. Int., 2020,47(3):3699-3705.
											 											 | 
										
																													
																						| [22] | 
																						 
											  KANG H B, CHANG J Y, KOH K,et al. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Inter., 2014,6(13):10576-10582
											 											 | 
										
																													
																						| [23] | 
																						 
											  YANG B, BIAN J, WANG L, et al. Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Phys. Chem. Chem. Phys., 2019,21(22):11697-11704.
											 											 | 
										
																													
																						| [24] | 
																						 
											  GEOFFREY C ALLEN, IAN S BUTLER, COLIN KIRBY. Characterization of ferrocene and (η 6-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy . Inorg. Chim. Acta, 1987,134:289-292.
											 											 | 
										
																													
																						| [25] | 
																						 
											  YAN X D, ZHENG M P, ZHU M K, et al. Enhanced electrical resistivity and mechanical properties in BCTZ-based composite ceramic. J. Adv. Dielect., 2019,9:1950036.
											 											 | 
										
																													
																						| [26] | 
																						 
											  JIANG C B, MA C, LUO K H, et al. Piezoelectric and ferroelectric properties of Na0.5Bi4.5Ti4O15-BaTiO3 composite ceramics with Mg doping. J. Adv. Dielect., 2019,9:1950005.
											 											 | 
										
																													
																						| [27] | 
																						 
											  HU H, JIANG X P, CHEN C,et al. Influence of Ce 3+ substitution on the structure and electrical characteristics of bismuth-layer Na0.5Bi8.5Ti7O27 ceramics. J. Inorg. Mater. , 2019,34(9):997-1003.
											 											 | 
										
																													
																						| [28] | 
																						 
											  ROBERT D SHANNON, REINHARD X FISCHER. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B, 2006,73:235111.
											 											 | 
										
																													
																						| [29] | 
																						 
											  YANG L T, KONG X, LI F,et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 2019,102(May):72-108.
											 											 | 
										
																													
																						| [30] | 
																						 
											  WANG T, WANG Y H, YANG H B, et al. Dielectric and energy storage property of BaTiO3-ZnNb2O6 ceramics. J. Inorg. Mater., 2019,35(4):431-438.
											 											 | 
										
																													
																						| [31] | 
																						 
											  DU J H, LI Y, SUN N N, et al. Dielectric, ferroelectric and high energy storage behavior of (1-x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta Phys. Sin., 2020,69(12):127703.
											 											 |