无机材料学报 ›› 2020, Vol. 35 ›› Issue (4): 431-438.DOI: 10.15541/jim20190170 CSTR: 32189.14.10.15541/jim20190170
所属专题: 功能陶瓷论文精选(二)
收稿日期:
2019-04-22
修回日期:
2019-06-12
出版日期:
2020-04-20
网络出版日期:
2019-09-12
作者简介:
王 通(1985-), 男, 讲师. E-mail: andyton85@163.com
基金资助:
WANG Tong1,WANG Yuanhao1,YANG Haibo1(),GAO Shuya1,WANG Fen1,LU Yawen2
Received:
2019-04-22
Revised:
2019-06-12
Published:
2020-04-20
Online:
2019-09-12
Supported by:
摘要:
采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (简称BTZN)陶瓷, 研究了BTZN陶瓷的烧结温度、结构、介电性能和铁电性能。BTZN陶瓷烧结温度随着ZnNb2O6含量增加逐渐降低。XRD结果表明当ZnNb2O6含量达到3mol%时出现第二相Ba2Ti5O12。介电测试结果表明随ZnNb2O6含量的增加, BTZN陶瓷介电常数逐渐减小, 而介电常数的频率稳定性逐渐增强。介电温谱表明所有BTZN陶瓷均符合X8R电容器标准。BTZN陶瓷的极化强度值随着ZnNb2O6含量的增加逐渐降低。当x=4mol%时, BTZN陶瓷获得240 kV/cm的击穿电场和1.22 J/cm 3的可释放能量密度。
中图分类号:
王通,王渊浩,杨海波,高淑雅,王芬,鲁雅文. BaTiO3-ZnNb2O6陶瓷介电及储能性能研究[J]. 无机材料学报, 2020, 35(4): 431-438.
WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431-438.
图1 BTZN陶瓷不同烧结温度的密度, 插图为不同ZN含量BTZN陶瓷最佳烧结温度和密度
Fig. 1 Density as a function of sintering temperature for BTZN ceramics with inset showing the optimum sintering temperature and density of BTZN ceramics with different ZN content
图4 BTZN陶瓷的介电性能频率稳定性
Fig. 4 Frequency stability of dielectric properties for BTZN ceramic (a) Frequency dependence of dielectric constant (lines are linear fitting results) with inset showing the fitting values of a and b with different ZN content, and (b) frequency dependence of dielectric loss, (c) FCC, and (d) FCC as a function of ZN content
图5 BTZN陶瓷-100~500 ℃的介电常数和介电损耗
Fig. 5 Temperature dependence of dielectric constant and loss of BTZN ceramics from -100 ℃ to 500 ℃ (a)BTZN1; (b) BTZN2; (c) BTZN3; (d) BTZN4; (e) BTZN5; (f) BTZN6
图7 BTZN陶瓷击穿电场下室温电滞回线(10 Hz), 箭头方向为ZN含量增大方向, 插图为不同ZN含量BTZN陶瓷BDS
Fig. 7 P-E loops of BTZN ceramics at critical electric field, room temperature and 10 Hz with direction of the arrow indicating the direction in which the ZN content increases with inset showing the BDS of BTZN ceramics with different ZN contents
图8 BTZN陶瓷储能性能
Fig. 8 Energy storage properties of BTZN ceramics Pmax, Pr and Pmax-Pr of BTZN ceramics at 100 kV/cm; (b) Energy storage density (W); (c) Recoverable energy storage density (Wrec); (d) Energy loss density (Wloss); (e) Energy storage efficiency (η) as a function of electric field; (f) Variations of W, Wrec, Wloss and η at critical electric field with different ZN contents
[1] | ACOSTA M, NOVAK N, ROJAS V , et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 2017,4(4):041305. |
[2] | HENNINGS D, ROSENSTEIN G . Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc., 1984,67(4):249-254. |
[3] | JIANG X W, HAO H, ZHANG S J , et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc., 2019,39(4):1103-1109. |
[4] | HUANG Y A, LU B, YI X Z , et al. Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. J. Inorg. Mater., 2018,33(7):767-772. |
[5] | GHAYOUR H, ABDELLAHI M . A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol., 2016,292:84-93. |
[6] | ZEB A, MILNE S J . Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc., 2014,34(13):3159-3166. |
[7] | DAMJANOVIC D . Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998,61(9):1267-1324. |
[8] | GUO F Q, ZHANG B H, FAN Z X , et al. Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron., 2016,27(6):5967-5971. |
[9] | YUAN Q B, LI G, YAO F Z , et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy, 2018,52:203-210. |
[10] | HAO X H . A review on the dielectric materials for high energy- storage application. J. Adv. Dielect., 2013,03(1):1330001. |
[11] | DU H L, YANG Z T, GAO F , et al. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater., 2018,33(10):1046-1058. |
[12] | YANG L T, KONG X, LI F , et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci., 2019,102:72-108. |
[13] | YAN F, YANG H B, LIN Y , et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem., 2017,56(21):13510-13516. |
[14] | YANG H B, YAN F, LIN Y , et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustainable Chem. Eng., 2017,5(11):10215-10222. |
[15] | YANG H B, YAN F, LIN Y , et al. Lead-free BaTiO3- Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc., 2017,37(10):3303-3311. |
[16] | YAN F, YANG H B, YING L , et al. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C, 2018,6(29):7905-7912. |
[17] | LIU X Y, YANG H B, YAN F , et al. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J. Alloys Compd., 2019,778:97-104. |
[18] | YANG H B, LIU P F, YAN F , et al. A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd., 2019,773:244-249. |
[19] | YANG Z T, GAO F, DU H L , et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019,58:768-777. |
[20] | WANG T, JIN L, TIAN Y , et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014,137:79-81. |
[21] | JIN L, LI F, ZHANG S J . Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc., 2014,97(1):1-27. |
[22] | WANG T, HU J C, YANG H B , et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys., 2017,121(8):084103. |
[23] | HUANG Y H, WU Y J, LI J , et al. Enhanced energy storage properties of barium strontium titanate ceramics prepared by Sol-Gel method and spark plasma sintering. J. Alloys Compd., 2017,701:439-446. |
[24] | PULI V S, PRADHAN D K, CHRISEY D B , et al. Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci., 2012,48(5):2151-2157. |
[25] | SUN Z, LI L X, YU S H , et al. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans., 2017,46(41):14341-14347. |
[26] | WANG T, JIN L, LI C C , et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015,98(2):559-566. |
[27] | HU Q Y, JIN L, WANG T , et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd., 2015,640:416-420. |
[28] | YUAN Q B, YAO F Z, WANG Y F , et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 2017,5(37):9552-9558. |
[29] | LI W B, ZHOU D, PANG L X , et al. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 2017,5(37):19607-19612. |
[30] | WANG X R, ZHANG Y, SONG X Z , et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012,32(3):559-567. |
[31] | WANG T, JIN L, SHU L L , et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd., 2014,617:399-403. |
[32] | YANG H B, YAN F, LIN Y , et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc., 2018,38(4):1367-1373. |
[33] | YANG H B, YAN F, ZHANG G , et al. Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd., 2017,720:116-125. |
[34] | WU T, PU Y P, CHEN K . Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int., 2013,39(6):6787-6793. |
[35] | WANG T, WANG Y H, YANG H B , et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage. J. Adv. Dielect., 2018,8(6):1850041. |
[36] | GAO F, LIU J J, HONG R Z , et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceram. Int., 2009,35(7):2687-2692. |
[37] | WANG T, WEI X Y, HU Q Y , et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B, 2013,178(16):1081-1086. |
[38] | YAN Y, NING C, JIN Z Z , et al. The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd., 2015,646:748-752. |
[39] | YANG Y, LIU K H, LIU X K , et al. Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int., 2016,42(6):7877-7882. |
[40] | SPAGNOL P D, VARELA J A, ZAGHETE M A , et al. Evidence of hetero-epitaxial growth of Pb(Mg1/3Nb2/3)O3 on the BaTiO3 seed particles of a citrate solution. Mater. Chem. Phys., 2002,77(3):918-923. |
[41] | YANG H B, YAN F, LIN Y , et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol., 2018,6(2):357-365. |
[42] | JIA W X, HOU Y D, ZHENG M P , et al. Superior temperature- stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc., 2018,101(8):3468-3479. |
[43] | SUN Y, LIU H, HAO H , et al. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Am. Ceram. Soc., 2015,98(5):1574-1579. |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 谭敏, 陈小武, 杨金山, 张翔宇, 阚艳梅, 周海军, 薛玉冬, 董绍明. 流延成型结合反应熔渗制备ZrB2-SiC陶瓷及其微观结构与氧化行为研究[J]. 无机材料学报, 2024, 39(8): 955-964. |
[3] | 黄建锋, 梁瑞虹, 周志勇. W/Cr共掺杂对CaBi2Nb2O9陶瓷晶体结构及电学性能的影响[J]. 无机材料学报, 2024, 39(8): 887-894. |
[4] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 武向权, 滕家琛, 季祥旭, 郝禹博, 张忠明, 徐春杰. 织构化多孔Al2O3-SiO2复合陶瓷片-球混合浆料特性及光强分布仿真[J]. 无机材料学报, 2024, 39(7): 769-778. |
[7] | 王康龙, 殷杰, 陈晓, 王力, 刘学建, 黄政仁. 颗粒级配对选区激光烧结打印结合常压固相烧结制备碳化硅陶瓷性能的影响[J]. 无机材料学报, 2024, 39(7): 754-760. |
[8] | 李刘媛, 黄开明, 赵秀艺, 刘会超, 王超. RE-Si-Al-O玻璃相对高熵稀土双硅酸盐微结构及耐CMAS腐蚀性能的影响[J]. 无机材料学报, 2024, 39(7): 793-802. |
[9] | 张育育, 吴轶城, 孙佳, 付前刚. 聚合物转化SiHfCN陶瓷的制备及其吸波性能[J]. 无机材料学报, 2024, 39(6): 681-690. |
[10] | 刘焱, 覃显鹏, 甘霖, 周国红, 章天金, 王士维, 陈鹤拓. 亚微米球形Y2O3粉体及其透明陶瓷的制备[J]. 无机材料学报, 2024, 39(6): 691-696. |
[11] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[12] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[13] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[14] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[15] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||