[1] LI J, WANG Z, GUO Y,et al. Influences of substituting of (Ni1/3Nb2/3)4+ for Ti4+ on the phase compositions, microstructures, and dielectric properties of Li2Zn[Ti1-x(Ni1/3Nb2/3)x]3O8, 2023, 12(4): 760. [2] FENG C, ZHOU X, TAO B,et al. Crystal structure and enhanced microwave dielectric properties of the Ce2[Zr1-x(Al1/2Ta1/2)x]3, 2022, 11(3): 392. [3] WANG J, CHONG X Y, ZHOU R,et al. Microstructure and thermal properties of RETaO4(RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scr. Mater., 2017, 126: 24. [4] CHEN L, JIANG Y H, CHONG X Y,et al. Synthesis and thermophysical properties of RETa3O9(RE = Ce, Nd, Sm, Eu, Gd, Dy, Er) as promising thermal barrier coatings. J. Am. Ceram. Soc., 2018, 101: 1266. [5] WU P, CHONG X Y, WU F S,et al. Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics. J. Eur. Ceram. Soc., 2020, 40(8): 3111. [6] WANG G, ZHANG D N, HUANG X,et al. Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics. J. Am. Ceram. Soc., 103, 2020: 214. [7] LEE H J, HONG K S, KIM I T.Crystal structure and microwave dielectric properties of M(NbxTa1-x)2O6 solid solution (M = Mg or Zn). J. Mater. Res., 2011, 12: 1437. [8] ZHANG P, ZHAO Y G, LIU J,et al. Enhanced microwave dielectric properties of NdNbO4 ceramic by Ta5+ substitution. J. Alloys Compd., 2015, 649: 90. [9] HAUGSRUD,R, NORBY T.Proton conduction in rare-earth ortho-niobates and ortho-tantalates, Nat. Mater., 2006, 5: 193. [10] FORBES T Z, NYMAN M, RODRIGUEZ M A, et al. The energetics of lanthanum tantalate materials.J. Solid State Chem., 2010, 183: 2516. [11] MACHIDA M, MURAKAMI S, KIJIMA T, et al. Photocatalytic property and electronic structure of lanthanide tantalates, LnTaO4(Ln= La, Ce, Pr, Nd, and Sm). J. Phys. Chem. B, 2001, 105: 3289. [12] SHANNON R D.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides.Acta Crystallogr., 1976, 32: 751. [13] BOSMAN A J, HAVINGA E E.Temperature dependence of dielectric constants of cubic ionic compounds.Phys. Rev., 1963, 129: 1593. [14] SHANNON R D.Dielectric polarizabilities of ions in oxides and fluorides.Appl. Phys., 1993, 73: 348. [15] HAKKI B W, COLEMAN P D.A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans.Microw. Theory Tech., 1960, 8(4): 402. [16] BAO J, DU J L, LIU L T.A new type of microwave dielectric ceramic based on K2O-SrO-P2O5 composition with high quality factor and low sintering temperature.Ceram. Int., 2021, 48: 784. [17] LIAO Q W, LI L X, REN X,et al. New low-loss microwave dielectric material ZnTiNbTaO8. J. Am. Ceram. Soc., 2011, 94: 3237. [18] WU F F, ZHOU D, DU C,et al. Temperature stable Sm(Nb1-xVx)O4(0.0 ≤ x ≤ 0.9) microwave dielectric ceramics with ultra-low dielectric loss for dielectric resonator antenna applications. J. Mater. Chem. C, 2021, 9: 9962. [19] YANG M, ZOU H X, YANG H M,et al. Phase composition and microwave dielectric properties of NaSrB5+5xO9+7.5x composite ceramics. J. Eur. Ceram. Soc., 2023, 43(5): 1964. [20] XIANG H C, FANG L, JIANG X W,et al. A novel temperature stable microwave dielectric ceramic with garnet structure: Sr2NaMg2V3O12. J. Am. Ceram. Soc., 2016, 99: 399. [21] WANG Y, ZUO R Z, ZHANG C,et al. Low-temperature-fired ReVO4(Re = La, Ce) microwave dielectric ceramics. J. Am. Ceram. Soc., 2015, 98(1): 1. [22] KIM W S, KIM T H, KIM E S,et al. Microwave dielectric properties and far infrared reflectivity spectra of the (Zr0.8Sn0.2)TiO4 ceramics with additives. Jpn. J. Appl. Phys., 1998, 37: 5367. [23] CAO Y C, ZHANG L B, MEI H R,et al. Crystal structure,phonon characteristics,and dielectric properties of CaMgGe2O6: a novel diopside microwave dielectric ceramic. Ceram. Int., 2022, 48(6): 8783. [24] DU K, YIN C Z, Yang J Q,et al. Crystal structure, far-infrared spectra,and microwave dielectric properties of bazirite-type BaZr(Si1-xGex)3O9 ceramics. Ceram. Int., 2022, 48(3): 3592. |