无机材料学报 ›› 2022, Vol. 37 ›› Issue (12): 1351-1357.DOI: 10.15541/jim20220179 CSTR: 32189.14.10.15541/jim20220179
孙扬善1,3(), 杨治华2, 蔡德龙2, 张正义1,3, 柳琪1,3, 房树清1,3, 冯良1,3, 石丽芬1,3, 王友乐1,3, 贾德昌2
收稿日期:
2022-03-30
修回日期:
2022-05-25
出版日期:
2022-12-20
网络出版日期:
2022-06-03
作者简介:
孙扬善(1989-), 男, 高级工程师. E-mail: ashan19890608@163.com
SUN Yangshan1,3(), YANG Zhihua2, CAI Delong2, ZHANG Zhengyi1,3, LIU Qi1,3, FANG Shuqing1,3, FENG Liang1,3, SHI Lifen1,3, WANG Youle1,3, JIA Dechang2
Received:
2022-03-30
Revised:
2022-05-25
Published:
2022-12-20
Online:
2022-06-03
About author:
SUN Yangshan (1989-), male, senior engineer. E-mail: ashan19890608@163.com
Supported by:
摘要:
在堇青石化学计量组分和非堇青石化学计量组分中分别添加B2O3, 通过玻璃粉末烧结法制备玻璃陶瓷,并研究了玻璃陶瓷的性能, 包括非等温析晶动力学、热学、力学和介电性能。本研究使用非堇青石化学计量组分制备了α-堇青石基玻璃陶瓷, 并加入B2O3促进α-堇青石析出, 提高MgO-Al2O3-SiO2玻璃的结晶能力。玻璃成分中过量的MgO和SiO2不会影响玻璃的析晶能力, 但会影响析晶的类型; 增加B2O3含量可以制备低热膨胀系数的α-堇青石基玻璃陶瓷, 但会降低玻璃陶瓷的软化点。此外, 增加B2O3含量还可以提高玻璃陶瓷的致密性和强度。α-堇青石基玻璃陶瓷的最大抗弯强度、弹性模量、断裂韧性和体积密度分别为(42.4±3.0) MPa、(34.0±2.9) GPa、(0.7±0.15) MPa·m1/2和1.53 g/cm3。制备的α-堇青石基玻璃陶瓷表现出良好的介电性能(介电常数低至3.5), 热膨胀系数低至4.22×10-6 K-1。
中图分类号:
孙扬善, 杨治华, 蔡德龙, 张正义, 柳琪, 房树清, 冯良, 石丽芬, 王友乐, 贾德昌. 粉末烧结法制备α-堇青石基玻璃陶瓷的析晶动力学和性能[J]. 无机材料学报, 2022, 37(12): 1351-1357.
SUN Yangshan, YANG Zhihua, CAI Delong, ZHANG Zhengyi, LIU Qi, FANG Shuqing, FENG Liang, SHI Lifen, WANG Youle, JIA Dechang. Crystallization Kinetics, Properties of α-cordierite Based Glass-ceramics Prepared by Glass Powder Sintering[J]. Journal of Inorganic Materials, 2022, 37(12): 1351-1357.
Powder | MgO | Al2O3 | SiO2 | B2O3 | Molar ratio of MgO : Al2O3 : SiO2 |
---|---|---|---|---|---|
S | 13.80 g (21.38%) | 34.90 g (21.19%) | 51.30 g (52.8%) | 5.00 g (4.45%) | 2 : 2 : 5 |
NS1 | 24.00 g (33.56%) | 22.00 g (12.08%) | 54.00 g (50.34%) | 5.00 g (4.02%) | 6 : 2 : 9 |
NS2 | 24.00 g (32.26%) | 22.00 g (11.61%) | 54.00 g (48.39%) | 10.00 g (7.74%) | 6 : 2 : 9 |
NS3 | 24.00 g (31.06%) | 22.00 g (11.18%) | 54.00 g (46.58%) | 15.00 g (11.18%) | 6 : 2 : 9 |
Table 1 Proportion of MAS based glass raw materials (molar percent)
Powder | MgO | Al2O3 | SiO2 | B2O3 | Molar ratio of MgO : Al2O3 : SiO2 |
---|---|---|---|---|---|
S | 13.80 g (21.38%) | 34.90 g (21.19%) | 51.30 g (52.8%) | 5.00 g (4.45%) | 2 : 2 : 5 |
NS1 | 24.00 g (33.56%) | 22.00 g (12.08%) | 54.00 g (50.34%) | 5.00 g (4.02%) | 6 : 2 : 9 |
NS2 | 24.00 g (32.26%) | 22.00 g (11.61%) | 54.00 g (48.39%) | 10.00 g (7.74%) | 6 : 2 : 9 |
NS3 | 24.00 g (31.06%) | 22.00 g (11.18%) | 54.00 g (46.58%) | 15.00 g (11.18%) | 6 : 2 : 9 |
Powder | E/ (kJ·mol-1) | A | k (Tp) | ||||
---|---|---|---|---|---|---|---|
5 ℃/ min | 10 ℃/ min | 15 ℃/ min | 20 ℃/ min | Mean | |||
S | 330.56 | 4.39×1012 | 0.117 | 0.265 | 0.348 | 0.417 | 0.285 |
NS1 | 332.06 | 3.54×1012 | 0.118 | 0.245 | 0.345 | 0.430 | 0.285 |
NS2 | 412.12 | 4.68×1015 | 0.141 | 0.287 | 0.424 | 0.528 | 0.345 |
NS3 | 417.86 | 8.05×1015 | 0.156 | 0.271 | 0.412 | 0.580 | 0.355 |
Table 2 Non-isothermal crystallization kinetic parameters of the glass powders
Powder | E/ (kJ·mol-1) | A | k (Tp) | ||||
---|---|---|---|---|---|---|---|
5 ℃/ min | 10 ℃/ min | 15 ℃/ min | 20 ℃/ min | Mean | |||
S | 330.56 | 4.39×1012 | 0.117 | 0.265 | 0.348 | 0.417 | 0.285 |
NS1 | 332.06 | 3.54×1012 | 0.118 | 0.245 | 0.345 | 0.430 | 0.285 |
NS2 | 412.12 | 4.68×1015 | 0.141 | 0.287 | 0.424 | 0.528 | 0.345 |
NS3 | 417.86 | 8.05×1015 | 0.156 | 0.271 | 0.412 | 0.580 | 0.355 |
[1] |
ZHI M S. Sintering additives to eliminate interphases in cordierite ceramics. Journal of the American Ceramic Society, 2010, 88(5): 1297-1301.
DOI URL |
[2] |
OKUYAMA M, FUKUI T, SAKURAI C. Phase transformation and mechanical properties of B2O3-doped cordierite derived from complex-alkoxide. Journal of Materials Science, 1993, 28(16): 4465-4470.
DOI URL |
[3] |
HUA S, LIANG K, FENG Z, et al. Characterization of cordierite-based glass-ceramics produced from fly ash. Journal of Non-Crystalline Solids, 2004, 337(2): 157-160.
DOI URL |
[4] |
SUNG Y M. Mechanical properties of α-cordierite and β-spodumene glass-ceramics prepared by sintering and crystallization heat treatments. Ceramics International, 1997, 23(5): 401-407.
DOI URL |
[5] |
YU Y, HAO X, SONG L, et al. Synthesis and characterization of single phase and low temperature co-fired cordierite glass-ceramics from perlite. Journal of Non-Crystalline Solids, 2016, 448: 36-42.
DOI URL |
[6] |
RAO R T. Ceramic and glass-ceramic packaging in the 1990s. Journal of the American Ceramic Society, 1991, 74(5): 895-908.
DOI URL |
[7] |
WANG S, LIANG K. Crystallization behavior and infrared radiation property of nickel-magnesium cordierite based glass-ceramics. Journal of Non-Crystalline Solids, 2008, 354(14): 1522-1525.
DOI URL |
[8] |
SUN Y, CAI D, YANG Z, et al. Effect of holding time on microstructure, mechanical, water resistance and dielectric properties of α-cordierite glass-ceramic coating on porous BN/Si2N2O ceramic. Ceramics International, 2018, 44(13): 15764-15769.
DOI URL |
[9] |
WANG F, ZHANG W, CHEN X, et al. Synthesis and characterization of low CTE value La2O3-B2O3-CaO-P2O5 glass/cordierite composites for LTCC application. Ceramics International, 2019, 45(6): 7203-7209.
DOI URL |
[10] | PRUNIER A R. Strengthened cordierite having minor amounts of calcia. US Patent 4745092, 1988.05.17. |
[11] |
WU J M, SHIANG H W. Effect of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glass. Journal of the American Ceramic Society, 2010, 83(5): 1259-1265.
DOI URL |
[12] |
BANJURAIZAH J, MOHAMAD H, AHMAD ZA. Densification and crystallization of nonstoichiometric cordierite glass with excess MgO synthesized from kaolin and talc. Journal of the American Ceramic Society, 2011, 94(3): 687-694.
DOI URL |
[13] |
BANJURALIZA J, MOHARMAD H, AHMAD Z A. Synthesis and characterization of xMgO-1.5Al2O3-5SiO2 (x=2.6-3.0) system using mainly talc and kaolin through the glass route. Materials Chemistry and Physics, 2011, 129(3): 910-918.
DOI URL |
[14] |
GOEL A, SHAABAN E R, MELO F, et al. Non-isothermal crystallization kinetic studies on MgO-Al2O3-SiO2-TiO2glass. Journal of Non-Crystalline Solids, 2007, 353(24/25): 2383-2391.
DOI URL |
[15] |
HAN L, SONG J, LIN C, et al. Crystallization, structure and properties of MgO-Al2O3-SiO2 highly crystalline transparent glass-ceramics nucleated by multiple nucleating agents. Journal of the European Ceramic Society, 2018, 38(13): 4533-4542.
DOI URL |
[16] |
SHI Z, LIANG K, ZHANG Q, et al. Effect of cerium addition on phase transformation and microstructure of cordierite ceramics prepared by Sol-Gel method. Journal of Materials Science, 2001, 36(21): 5227-5230.
DOI URL |
[17] | MCMILAN P W. Glass-Ceramics, London: Academic press, 1964. |
[18] |
MEI S, YANG J, FERREIRA J. The densification and morphology of cordierite-based glass-ceramics. Materials Letters, 2001, 47(4/5): 205-211.
DOI URL |
[19] |
CHAO C H, LU H Y. Crystallization of Na2O-doped colloidal gel-derived silica. Materials Science and Engineering: A, 2000, 282(1/2): 123-130.
DOI URL |
[20] |
MALACHEVSKY M T, FISCINA J E, ESPARZA D A. Preparation of synthetic cordierite by solid-state reaction via bismuth oxide flux. Journal of the American Ceramic Society, 2001, 84(7): 1575-1577.
DOI URL |
[21] |
DYATLOVA E M, MINENKOVA G Y, KOLONTAEVA T V. Intensification of sintering of mullite-cordierite ceramics using mineralizers. Glass and Ceramics, 2000, 57(11/12): 427-430.
DOI URL |
[22] |
REBEN M, HONG L. Thermal stability and crystallization kinetics of MgO-Al2O3-B2O3-SiO2 glasses. International Journal of Applied Glass Science, 2011, 2(2): 96-107.
DOI URL |
[23] |
LUO W, BAO Z, JIANG W, et al. Effect of B2O3 on the crystallization, structure and properties of MgO-Al2O3-SiO2 glass- ceramics. Ceramics International, 2019, 45(18): 24750-24756.
DOI URL |
[24] |
WANG X, RUAN J M, CHEN Q Y. Effects of surfactants on the microstructure of porous ceramic scaffolds fabricated by foaming for bone tissue engineering. Materials Research Bulletin, 2009, 44(6): 1275-1279.
DOI URL |
[25] |
KISSINGER H E. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1957, 29(11): 1702-1706.
DOI URL |
[26] | FOKIN V M, YURITSYN N S, ZANOTTO E D. Nucleation and crystallization kinetics in silicate glasses: theory and experiment. in nucleation theory and applications. Wiley-VCH Verlag GmbH & Co. KGaA, 2005. |
[27] |
FLYNN J H. Thermal analysis kinetics—past, present and future. Thermochimica Acta, 1992, 203: 519-526.
DOI URL |
[28] | HÖLLAND W, BEALL G. Glass-ceramic technology. Westernville: The American Ceramic Society, 2002. |
[29] |
WANG S, JIA D, YANG Z, et al. Effect of BN content on microstructures, mechanical and dielectric properties of porous BN/Si3N4 composite ceramics prepared by gel casting. Ceramics International, 2013, 39(4): 4231-4237.
DOI URL |
[30] |
BANJURAIZAH J, MOHAMAD H, AHMAD Z A. Crystal structure of single phase and low sintering temperature of α-cordierite synthesized from talc and kaolin. Journal of Alloys and Compounds, 2009, 482(1/2): 429-436.
DOI URL |
[1] | 范武刚, 曹雄, 周响, 李玲, 赵冠楠, 张兆泉. 8YSZ陶瓷在模拟压水堆水环境中的耐腐蚀性能[J]. 无机材料学报, 2024, 39(7): 803-809. |
[2] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[3] | 孙海洋, 季伟, 王为民, 傅正义. TiB-Ti周期序构复合材料设计、制备及性能研究[J]. 无机材料学报, 2024, 39(6): 662-670. |
[4] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[5] | 刘国昂, 王海龙, 方成, 黄飞龙, 杨欢. B4C含量对(Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C陶瓷力学性能及抗氧化性能的影响[J]. 无机材料学报, 2024, 39(6): 697-706. |
[6] | 粟毅, 史扬帆, 贾成兰, 迟蓬涛, 高扬, 马青松, 陈思安. 浆料浸渍辅助PIP工艺制备C/HfC-SiC复合材料的微观结构及性能研究[J]. 无机材料学报, 2024, 39(6): 726-732. |
[7] | 李雷, 程群峰. 高性能MXenes纳米复合材料研究进展[J]. 无机材料学报, 2024, 39(2): 153-161. |
[8] | 刘艳艳, 谢曦, 刘增乾, 张哲峰. MAX相陶瓷增强金属基复合材料: 制备、性能与仿生设计[J]. 无机材料学报, 2024, 39(2): 145-152. |
[9] | 王博, 蔡德龙, 朱启帅, 李达鑫, 杨治华, 段小明, 李雅楠, 王轩, 贾德昌, 周玉. SrAl2Si2O8增强BN陶瓷的力学性能及抗热震性能[J]. 无机材料学报, 2024, 39(10): 1182-1188. |
[10] | 倪晓诗, 林子扬, 秦沐严, 叶松, 王德平. 硅烷化介孔硼硅酸盐生物玻璃微球对PMMA骨水泥生物活性和力学性能的影响[J]. 无机材料学报, 2023, 38(8): 971-977. |
[11] | 陈雷, 胡海龙. 柔性PDMS基介电复合材料的电场及击穿损伤形貌演变规律研究[J]. 无机材料学报, 2023, 38(2): 155-162. |
[12] | 付师, 杨增朝, 李江涛. 功率模块封装用高强度高热导率Si3N4陶瓷的研究进展[J]. 无机材料学报, 2023, 38(10): 1117-1132. |
[13] | 吴东江, 赵紫渊, 于学鑫, 马广义, 由竹琳, 任冠辉, 牛方勇. Al2O3-TiCp复相陶瓷激光定向能量沉积直接增材制造[J]. 无机材料学报, 2023, 38(10): 1183-1192. |
[14] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[15] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||