[1] |
QI H, ZUO R Z. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A, 2019,7(8):3971-3978.
|
[2] |
LIU Z Y, LU J S, MAO Y Q, et al. Energy storage properties of NaNbO3-CaZrO3 ceramics with coexistence of ferroelectric and antiferroelectric phases. J. Eur. Ceram. Soc., 2018,38(15):4939-4945.
|
[3] |
ZHU L F, YAN Y K, LENG H Y,et al. Energy-storage performance of NaNbO3 based multilayered capacitors. J. Mater. Chem. C, 2021,9(25):7950-7957.
|
[4] |
SHIMIZU H, GUO H Z, REYES-LILLO S E,et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0≤x≤0.10). Dalton. T., 2015,44(23):10763-10772.
|
[5] |
LIU X, ZHAO Y Y. Research progress of antiferroelectric energy storage ceramics. Electronic Components and Materials, 2020,39(11):55-66.
|
[6] |
MATTHIAS B T. New ferroelectric crystals. Physical Review, 1949,75(11):1771.
|
[7] |
VOUSDEN P. The non-polarity of sodium niobate. Acta. Cryst., 1952,5(5):690.
|
[8] |
ZHANG H F, YANG B, YAN H X, et al. Isolation of a ferroelectric intermediate phase in antiferroelectric dense sodium niobate ceramics. Acta Mater., 2019,179:255-261.
|
[9] |
GUO H Z, SHIMIZU H, CLIVE A RANDALL. Microstructural evolution in NaNbO3-based antiferroelectrics. J. Appl. Phys., 2015,118(17):174107.
|
[10] |
GUO H Z, SHIMIZU H, CLIVE A RANDALL. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett., 2015,107(11):112904.
|
[11] |
GAO L S, GUO H Z, ZHANG S J,et al. Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops. Appl. Phys. Lett., 2018,112(9):092905.
|
[12] |
GUO H Z, SHIMIZU H, YOUICHI MIZUNO, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution. J. Appl. Phys., 2015,117(21):214103.
|
[13] |
GAO L S, GUO H Z, ZHANG S J, et al. A perovskite lead-free antiferroelectric xCaHfO3-( 1-x) NaNbO3 with induced double hysteresis loops at room temperature. J. Appl. Phys., 2016,120(20):204102.
|
[14] |
QI H, ZUO R Z, XIE A W, et al. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J. Eur. Ceram. Soc., 2019,39(13):3703-3709.
|
[15] |
YE J M, WANG G S, CHEN X F, et al. Enhanced antiferroelectricity and double hysteresis loop observed in lead-free (1-x)NaNbO3-xCaSnO3 ceramics. J. Appl. Phys., 2019,114(12):122901.
|
[16] |
YE J M, WANG G S, CHEN X F,et al. Effect of rare-earth doping on the dielectric property and polarization behavior of antiferroelectric sodium niobate-based ceramics. J. Materiomics, 2021,7(2):339-346.
|
[17] |
ZHAO L, LIU Q, ZHANG S J, et al. Lead-free AgNbO3 anti-ferroelectric ceramics with an enhanced energy storage performance using MnO2 modification. J. Mater. Chem. C, 2016,4(36):8380-8384.
|
[18] |
WOLSKA A, MOLAK A, LAWNICZAK-JABLONSKA K,et al. XANES Mn K edge in NaNbO3 based ceramics doped with Mn and Bi ions. Phys. Scripta, 2005,2005(T115):989-991.
|
[19] |
CHAO L M, HOU Y D, ZHENG M P,et al. NaNbO3 nanoparticles: Rapid mechanochemical synthesis and high densification behavior. J. Alloy. Compd., 2017,695:3331-3338.
|
[20] |
DONG L, DONG G X, ZHANG Q. Dielectric properties of Fe2O3-doped MgTiO3-CaTiO3 microwave ceramics. Materials Review, 2016,30(5):47-50.
|
[21] |
WANG X, REN P R, REN D,et al. B-site acceptor doped AgNbO3 lead-free antiferroelectric ceramics: The role of dopant on microstructure and breakdown strength. Ceram. Int., 2020,47(3):3699-3705.
|
[22] |
KANG H B, CHANG J Y, KOH K,et al. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Appl. Mater. Inter., 2014,6(13):10576-10582
|
[23] |
YANG B, BIAN J, WANG L, et al. Enhanced photocatalytic activity of perovskite NaNbO3 by oxygen vacancy engineering. Phys. Chem. Chem. Phys., 2019,21(22):11697-11704.
|
[24] |
GEOFFREY C ALLEN, IAN S BUTLER, COLIN KIRBY. Characterization of ferrocene and (η 6-benzene) tricarbonylchromium complexes by X-ray photoelectron spectroscopy . Inorg. Chim. Acta, 1987,134:289-292.
|
[25] |
YAN X D, ZHENG M P, ZHU M K, et al. Enhanced electrical resistivity and mechanical properties in BCTZ-based composite ceramic. J. Adv. Dielect., 2019,9:1950036.
|
[26] |
JIANG C B, MA C, LUO K H, et al. Piezoelectric and ferroelectric properties of Na0.5Bi4.5Ti4O15-BaTiO3 composite ceramics with Mg doping. J. Adv. Dielect., 2019,9:1950005.
|
[27] |
HU H, JIANG X P, CHEN C,et al. Influence of Ce 3+ substitution on the structure and electrical characteristics of bismuth-layer Na0.5Bi8.5Ti7O27 ceramics. J. Inorg. Mater. , 2019,34(9):997-1003.
|
[28] |
ROBERT D SHANNON, REINHARD X FISCHER. Empirical electronic polarizabilities in oxides, hydroxides, oxyfluorides, and oxychlorides. Phys. Rev. B, 2006,73:235111.
|
[29] |
YANG L T, KONG X, LI F,et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci., 2019,102(May):72-108.
|
[30] |
WANG T, WANG Y H, YANG H B, et al. Dielectric and energy storage property of BaTiO3-ZnNb2O6 ceramics. J. Inorg. Mater., 2019,35(4):431-438.
|
[31] |
DU J H, LI Y, SUN N N, et al. Dielectric, ferroelectric and high energy storage behavior of (1-x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta Phys. Sin., 2020,69(12):127703.
|