无机材料学报 ›› 2022, Vol. 37 ›› Issue (5): 499-506.DOI: 10.15541/jim20210402 CSTR: 32189.14.10.15541/jim20210402

所属专题: 【信息功能】介电、铁电、压电材料(202409)

• 研究论文 • 上一篇    下一篇

(0.96NaNbO3-0.04CaZrO3)-xFe2O3反铁电陶瓷的介电及储能性能研究

叶芬1,2(), 江向平1(), 陈云婧1, 黄枭坤1, 曾仁芬1, 陈超1, 聂鑫1, 成昊2()   

  1. 1. 景德镇陶瓷大学 材料科学与工程学院, 江西省先进陶瓷材料重点实验室, 景德镇 333001
    2. 铜仁学院 材料与化学工程学院, 铜仁 554300
  • 收稿日期:2021-06-28 修回日期:2021-07-20 出版日期:2022-05-20 网络出版日期:2021-10-21
  • 通讯作者: 江向平, 教授. E-mail: jiangxp64@163.com;成昊, 教授. E-mail:smallone.1@163.com
  • 作者简介:叶芬(1987-), 女, 博士研究生. E-mail: yefen1987@163.com
  • 基金资助:
    国家自然科学基金(52062018);国家自然科学基金(51862016);国家自然科学基金(51762024);江西省自然科学基金(20192BAB20600);江西省自然科学基金(20192BAB212002);江西省教育厅科技项目(GJJ190712);江西省教育厅科技项目(GJJ190699);贵州省教育厅创新团队(KY[2018]030)

Dielectric and Energy Storage Property of (0.96NaNbO3-0.04CaZrO3)-xFe2O3 Antiferroelectric Ceramics

YE Fen1,2(), JIANG Xiangping1(), CHEN Yunjing1, HUANG Xiaokun1, ZENG Renfen1, CHEN Chao1, NIE Xin1, CHENG Hao2()   

  1. 1. Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
    2. College of Material and Chemical Engineering, Tongren University, Tongren 554300, China
  • Received:2021-06-28 Revised:2021-07-20 Published:2022-05-20 Online:2021-10-21
  • Contact: JIANG Xiangping, professor. E-mail: jiangxp64@163.com; CHENG Hao, professor. E-mail: smallone.1@163.com
  • About author:YE Fen (1987-), female, PhD candidate. E-mail: yefen1987@163.com
  • Supported by:
    National Natural Science Foundation of China(52062018);National Natural Science Foundation of China(51862016);National Natural Science Foundation of China(51762024);Natural Science Foundation of Jiangxi Province(20192BAB20600);Natural Science Foundation of Jiangxi Province(20192BAB212002);Foundation of Jiangxi Provincial Education Department(GJJ190712);Foundation of Jiangxi Provincial Education Department(GJJ190699);Foundation of the Department of Education of Guizhou province(KY[2018]030)

摘要:

0.96NaNbO3-0.04CaZrO3(简称NNCZ)陶瓷在室温下展现出稳定的双电滞回线, 但是其储能密度、储能效率和击穿强度都比较低, 限制其成为储能材料。本工作通过掺杂Fe2O3, 利用Fe 3+离子变价的特点, 实现NNCZ储能性能的优化。采用传统固相法制备了(0.96NaNbO3-0.04CaZrO3)-xFe2O3(简称NNCZ-xFe)反铁电储能陶瓷, 并对样品的相结构、微观形貌、电学性能和储能性能进行了表征, 重点研究了Fe2O3掺杂量对NNCZ陶瓷介电和储能性能的影响规律。结果表明, 样品均具有单一的钙钛矿结构, 掺杂Fe2O3能明显降低NNCZ陶瓷的烧结温度, 晶粒平均尺寸随着掺杂量增大先减小后增大, 掺杂量x=0.02时, 晶粒平均尺寸最小(5.04 mm), 且具有较好的储能性能。室温下, NNCZ-0.02Fe击穿强度为230 kV/cm, 击穿前的有效储能密度和储能效率分别为1.57 J/cm 3和55.74%。在125 ℃和外加电场为180 kV/cm下, NNCZ-0.02Fe的储能密度为4.53 J/cm 3。掺杂Fe2O3使NNCZ陶瓷的烧成温度降低, 氧空位的迁移速率下降, 抑制晶粒的长大, 同时降低了介电损耗, 使得击穿强度增加; 适量氧空位钉扎使得反铁电相向铁电相相翻转变得困难, 避免出现哑铃状双电滞回线, 从而提高储能效率。本研究结果表明NNCZ-xFe在电介质储能领域具有潜在应用价值。

关键词: NaNbO3, 反铁电, 储能性能, 介电性能

Abstract:

0.96NaNbO3-0.04CaZrO3(NNCZ) ceramic shows stable double hysteresis loops at room temperature, but the property of energy density, energy storage efficiency and breakdown strength of NNCZ are terrible, which limit NNCZ to be used as energy storage materials. In this work, Fe2O3 was chosen to modify the energy storage property of NNCZ. (0.96NaNbO3-0.04CaZrO3)-xFe2O3 (NNCZ-xFe) antiferroelectric ceramics were prepared by traditional solid reaction method. The phase, morphology, dielectric property and energy storage property of NNCZ-xFe were characterized. The results indicated that the crystal structures of NNCZ-xFe ceramics were pure perovskite structure. The sintering temperature of NNCZ ceramic was decreased with addition of Fe2O3. With the increase of Fe2O3 content, the grain size of NNCZ-xFe were decreased firstly and then raised. The NNCZ-0.02Fe ceramic obtained the smallest grain size (5.04 μm) and the best energy storage property. The breakdown strength of NNCZ-0.02Fe was 230 kV/cm at room temperature (RT). The recoverable energy density and energy storage efficiency before breakdown were 1.57 J/cm 3and 55.74% respectively. At 125 ℃ and 180 kV/cm, the energy density of NNCZ- 0.02Fe was 4.53 J/cm 3. Fe2O3 doping decreased the sintering temperature of NNCZ ceramics, reduced the the migration rate of oxygen vacancies and inhibited the growth of grains. At the same time, it reduced the dielectric loss and improved the breakdown strength. The oxygen vacancies pinning made antiferroelectric phase switch to ferroelectric phase harder, avoided appearance dumbbell-shaped double hysteresis loops, so the energy storage efficiency was improved. This research shows that NNCZ-xFe has a good potential application in the field of dielectric energy storage.

Key words: NaNbO3, antiferroelectric, energy storage property, dielectric property

中图分类号: