无机材料学报 ›› 2022, Vol. 37 ›› Issue (4): 376-386.DOI: 10.15541/jim20210420 CSTR: 32189.14.10.15541/jim20210420
所属专题: 【信息功能】介电、铁电、压电材料(202409)
吴明1(), 肖娅男1, 李华强1, 刘泳斌1, 高景晖1(), 钟力生1, 娄晓杰2
收稿日期:
2021-07-05
修回日期:
2021-08-09
出版日期:
2022-04-20
网络出版日期:
2021-11-01
通讯作者:
高景晖, 教授. E-mail: gaojinghui@xjtu.edu.cn作者简介:
吴明(1992-), 男, 博士, 助理教授. E-mail: wuming@xjtu.edu.cn
基金资助:
WU Ming1(), XIAO Yanan1, LI Huaqiang1, LIU Yongbin1, GAO Jinghui1(), ZHONG Lisheng1, LOU Xiaojie2
Received:
2021-07-05
Revised:
2021-08-09
Published:
2022-04-20
Online:
2021-11-01
Contact:
GAO Jinghui, professor. E-mail: gaojinghui@xjtu.edu.cnAbout author:
WU Ming (1992-), male, PhD, assistant professor. E-mail: wuming@xjtu.edu.cn
Supported by:
摘要:
电卡效应是指电介质材料中由于施加或去除电场导致的材料温度变化的现象, 包括正电卡效应和负电卡效应两种类型。电卡效应作为一种高效率、无噪音、环境友好的制冷效应, 在固态制冷特别是集成电路制冷领域显示出广阔的应用前景, 在过去的几十年中吸引了科研人员广泛的研究兴趣。研究表明, 通过结合正负电卡效应, 可以显著提高电卡效应的制冷能力。与正电卡效应不同, 负电卡效应因其独特的物理起源, 调控手段极为有限。本文以负电卡效应为中心, 重点介绍反铁电材料中负电卡效应的最新研究进展, 具体内容包括以下四个部分: 首先, 从电卡效应的研究历史出发, 介绍了电卡效应的制冷原理, 介绍了一个典型的能将正、负电卡效应结合的双制冷循环; 其次, 介绍了基于Maxwell关系的负电卡效应间接测试方法, 以及几种负电卡效应直接测试方法, 并讨论了不同方法的适用条件和优缺点; 再次, 以典型的负电卡效应材料——反铁电材料为例, 着重介绍了负电卡效应的物理起源, 综述了反铁电薄膜和反铁电块体材料中的负电卡效应, 并对其它铁电材料中的负电卡效应做了简要介绍; 最后, 对负电卡效应的研究进行了总结和展望。
中图分类号:
吴明, 肖娅男, 李华强, 刘泳斌, 高景晖, 钟力生, 娄晓杰. 反铁电材料中负电卡效应的研究进展[J]. 无机材料学报, 2022, 37(4): 376-386.
WU Ming, XIAO Yanan, LI Huaqiang, LIU Yongbin, GAO Jinghui, ZHONG Lisheng, LOU Xiaojie. Negative Electrocaloric Effects in Antiferroelectric Materials: a Review[J]. Journal of Inorganic Materials, 2022, 37(4): 376-386.
图1 电卡效应冷却循环中的极化翻转、温度变化和熵变示意图
Fig. 1 Schematic of polarization switching, temperature change and entropy change during cooling cycle of electrocaloric effect (a) In virgin state, the ferroelectric polarization randomly distributs; (b) With the application of electric field, the ferroelectric polarization is aligned, and the temperature of the ferroelectric materials is increased; (c) After an isothermal process, the temperature of the ferroelectric materials decreases to the environment temperature; (d) After removal of the electric field, the ferroelectric polarization recovers randomly distribution, the temperature of the ferroelectric materials decreases
图2 基于正负电卡效应共存的制冷循环[10]
Fig. 2 Feasible combination of positive and negative electrocaloric effect[10] (a) Schematic of the cooling cycle; (b) Heat flow of the dual cooling cycle measured by DSC
图3 电卡效应直接测量法
Fig. 3 Direct measurements of electrocaloric effect (a) Thermocouple or thermometer[15]; (b) Scanning thermal microscopy[16]; (c) Infra-red camera[17]; (d) Modified differential scanning calorimetry[18]
图4 反铁电材料中的电畴、电滞回线和产生负电卡效应的可能机制示意图[27]
Fig. 4 Electric domain and representative hysteresis loop of antiferroelectrics, schematic of a possible mechanism of negative electrocaloric effect in antiferroelectrics[27] Electric domain of antiferroelectrics (a) before and (b) after being polarized; (c) Representative hysteresis loop of antiferroelectrics; Schematic of a possible mechanism of negative ECE in antiferroelectrics (d1) without any electric field and (d2) under a modest electric field
图5 PbZrO3基反铁电薄膜中的负电卡效应
Fig. 5 Negative electrocaloric effect in PbZrO3-based antiferroelectric thin films (a) P-T curves and (b) temperature change of (Pb0.97, La0.02)(Zr0.95,Ti0.05)O3 thin film[21]; (c) P-T curves and (d) temperature change of 4% (molar ratio) Eu doped PbZrO3 thin film[32]; (e) P-T curves and (f) temperature change of 1% Yb (molar ratio) doped PbZrO3 thin film[33]
图6 PbZrO3薄膜中利用界面缺陷增强负电卡效应[29]
Fig. 6 Interface-defect-enhanced negative electrocaloric effect in PbZrO3 thin films[29] (a) Mechanism of the defect-dipole-suppressed antiferroelectric-ferroelectric phase transition during electric cycling; (b) Antiferroelctric-ferroelectric phase transition field of the PbZrO3 thin films with interface defect (p-PZO) and without interface defect (f-PZO); (c) Comparison of negative ECE in different materials Colorful figures are available on website
图7 不同电场下PbZrO3、(Pb0.97,La0.02)(Zr0.95,Ti0.05)O3和B位非化学计量比(Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03)陶瓷的负电卡效应
Fig. 7 Negative electrocaloric effects of PbZrO3, (Pb0.97,La0.02)(Zr0.95,Ti0.05)O3 and B-site nonstoichiometric (Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03) ceramics under different electric fields (a) PbZrO3[34]; (b) (Pb0.97,La0.02)(Zr0.95,Ti0.05)O3[35]; (c) B-site nonstoichiometric (Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03)[36] Colorful figures are available on website
图8 两种PNZST陶瓷在不同温度下测试的电滞回线以及两种陶瓷的P-T曲线、温度变化ΔT和熵变ΔS[37]
Fig. 8 Hysteresis loops of PNZST13/2/2 and PNZST43/8/2 under different temperatures, P-T curves, temperature change ΔT and entropy change ΔS of PNZST13/2/2 and PNZST43/8/2[37] (a) Hysteresis loops of PNZST13/2/2; (b) Hysteresis loops of PNZST43/8/2; (c-e) P-T curves, temperature change ΔT and entropy change ΔS of PNZST13/2/2; (f-h) P-T curves, temperature change ΔT and entropy change ΔS of PNZST43/8/2 Colorful figures are available on website
图9 (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3单晶、(Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3单晶、(Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3陶瓷和(Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3陶瓷的电卡效应
Fig. 9 Electrocaloric effect of (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 single crystal, (Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3 single crystal, (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3 ceramics, and (Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3 ceramics (a, b) Hysteresis loops and temperature change ΔT of the (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 single crystal[9]; (c, d) Hysteresis loops and temperature change ΔT of the (Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3 single crystal[40]; (e) Temperature change ΔT of the (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3 ceramics[39]; (f) Comparison of the temperature change in (Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3 ceramics with other dielectric materials[39] Colorful figures are available on website
[1] | CORREIA T, ZHANG Q. New Generation of Coolers: Electrocaloric Materials New York: Springer, 2014: 34 |
[2] |
SCOTT J. Electrocaloric materials. Annual Review of Materials Research, 2011, 41: 229-240.
DOI URL |
[3] |
FÄHLER S, RÖßLER U, KASTNER O, et al. Caloric effects in ferroic materials: new concepts for cooling. Advanced Engineering Materials, 2012, 14(1/2): 10-19.
DOI URL |
[4] |
SHI J, HAN D, LI Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200-1225.
DOI URL |
[5] |
NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468-472.
DOI URL |
[6] |
MISCHENKO A, ZHANG Q, SCOTT J, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270-1271.
DOI URL |
[7] |
WU H, ZHU J, ZHANG T. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419-427.
DOI URL |
[8] |
PARK M, KIM H, KIM Y, et al. Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Advanced Materials, 2016, 28(36): 7956-7961.
DOI URL |
[9] |
ZHUO F, LI Q, GAO J, et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb,La)(Zr,Sn,Ti)O3 single crystal. Applied Physics Letters, 2016, 108(8):082904.
DOI URL |
[10] |
LI J, QIN S, BAI Y, et al. Flexible control of positive and negative electrocaloric effects under multiple fields for a giant improvement of cooling capacity. Applied Physics Letters, 2017, 111(9):093901.
DOI URL |
[11] |
LI J, WU H, LI J, et al. Room-temperature symmetric giant positive and negative electrocaloric effect in PbMg0.5W0.5O3 antiferroelectric ceramic. Advanced Functional Materials, 2021, 31(33):2101176.
DOI URL |
[12] |
LU S, TANG X, WU S, et al. Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 2014, 29(1): 6-12.
DOI URL |
[13] | YU Y, DU H, YANG Z, et al. Electrocaloric effect of lead-free bulk ceramics: current status and challenges. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[14] |
WU M, SONG D, VATS G, et al. Defect-controlled electrocaloric effect in PbZrO3 thin films. Journal of Materials Chemistry C, 2018, 6(38): 10332-10340.
DOI URL |
[15] |
JIA Y, SUNGTAEK J. Direct characterization of the electrocaloric effects in thin films supported on substrates. Applied Physics Letters, 2013, 103(4):042903.
DOI URL |
[16] |
SHAN D, PAN K, LIU Y, et al. High fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy. Nano Energy, 2020, 67: 104203.
DOI URL |
[17] |
LIU Y, SCOTT J, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Applied Physics Reviews, 2016, 3(3):031102.
DOI URL |
[18] |
SANLIALP M, SHVARTSMAN V, ACOSTA M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3) TiO3 ceramics obtained by direct measurements. Applied Physics Letters, 2015, 106(6):062901.
DOI URL |
[19] |
LI J, ZHANG D, QIN S, et al. Large room-temperature electrocaloric effect in lead-free BaHfxTi1-xO3 ceramics under low electric field. Acta Materialia, 2016, 115: 58-67.
DOI URL |
[20] |
WU P, LOU X, LI J, et al. Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary. Journal of Alloys and Compounds, 2017, 725: 275-282.
DOI URL |
[21] |
GENG W, LIU Y, MENG X, et al. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Advanced Materials, 2015, 27(20): 3165-3169.
DOI URL |
[22] |
MA Y, GRÜNEBOHM A, MEYER K, et al. Positive and negative electrocaloric effect in BaTiO3 in the presence of defect dipoles. Physical Review B, 2016, 94(9):094113.
DOI URL |
[23] |
WEYLAND F, BRADEŠKO A, MA Y, et al. Impact of polarization dynamics and charged defects on the electrocaloric response of ferroelectric Pb(Zr,Ti)O3 ceramics. Energy Technology, 2018, 6(8): 1519-1525.
DOI URL |
[24] |
LI J, YIN R, SU X, et al. Complex phase transitions and associated electrocaloric effects in different oriented PMN-30PT single crystals under multi-fields of electric field and temperature. Acta Materialia, 2020, 182: 250-256.
DOI URL |
[25] | VATS G, KUMAR A, ORTEGA N, et al. Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energy & Environmental Science, 2016, 9(4): 1335-1345. |
[26] |
ZHANG T, LI W, HOU Y, et al. Positive/negative electrocaloric effect induced by defect dipoles in PZT ferroelectric bilayer thin films. RSC Advances, 2016, 6(76): 71934-71939.
DOI URL |
[27] |
HAO X, ZHAI J, KONG L, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63: 1-57.
DOI URL |
[28] |
GRüNEBOHM A, MA Y, MARATHE M, et al. Origins of the inverse electrocaloric effect. Energy Technology, 2018, 6(8): 1491-1511.
DOI URL |
[29] | WU M, SONG D, GUO M, et al. Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering. ACS Applied Materials & Interfaces, 2019, 11(40): 36863-36870. |
[30] |
GOUPIL F, BERENOV A, AXELSSON A, et al. Direct and indirect electrocaloric measurements on <001> PbMg1/3Nb2/3O3-30PbTiO3 single crystals. Journal of Applied Physics, 2012, 111(12):124109.
DOI URL |
[31] |
BAI Y, ZHENG G, SHI S. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Materials Research Bulletin, 2011, 46(11): 1866-1869.
DOI URL |
[32] |
YE M, LI T, SUN Q, et al. A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films. Journal of Materials Chemistry C, 2016, 4(16): 3375-3378.
DOI URL |
[33] |
WANG W, CHEN X, SUN Q, et al. Tailoring the negative electrocaloric effect of PbZrO3 antiferroelectric thin films by Yb doping. Journal of Alloys and Compounds, 2020, 830: 154581.
DOI URL |
[34] |
PIRC R, ROŽIČ B, KORUZA J, et al. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL (Europhysics Letters), 2014, 107(1):17002.
DOI URL |
[35] |
ZHAO Y, LIU Q, TANG X, et al. Giant negative electrocaloric effect in anti-ferroelectric (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics. ACS Omega, 2019, 4(11): 14650-14654.
DOI URL |
[36] |
NIU Z, JIANG Y, TANG X, et al. Giant negative electrocaloric effect in B-site non-stoichiometric (Pb0.97La0.02)(Zr0.95Ti0.05)1+yO3 anti-ferroelectric ceramics. Materials Research Letters, 2018, 6(7): 384-389.
DOI URL |
[37] |
XU Z, FAN Z, LIU X, et al. Impact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O3 ceramics. Applied Physics Letters, 2017, 110(8):082901.
DOI URL |
[38] |
ZHUO F, LI Q, YAN Q, et al. Temperature induced phase transformations and negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Journal of Applied Physics, 2017, 122(15):154101.
DOI URL |
[39] | ZHUO F, LI Q, GAO J, et al. Giant negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectrics near room temperature. ACS Applied Materials & Interfaces, 2018, 10(14): 11747-11755. |
[40] |
ZHUO F, LI Q, QIAO H, et al. Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Applied Physics Letters, 2018, 112(13):133901.
DOI URL |
[41] |
CHEN J, TANG Z, LU Q, et al. Giant negative electrocaloric effect over a broad temperature range in lead-free based Bi0.5(K0.15Na0.85)0.05TiO3 relaxor ferroelectric films. Journal of Alloys and Compounds, 2018, 756: 62-67.
DOI URL |
[42] |
GUO M, WU M, GAO W, et al. Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range. Journal of Materials Chemistry C, 2019, 7(3): 617-621.
DOI URL |
[1] | 魏相霞, 张晓飞, 徐凯龙, 陈张伟. 增材制造柔性压电材料的现状与展望[J]. 无机材料学报, 2024, 39(9): 965-978. |
[2] | 杨鑫, 韩春秋, 曹玥晗, 贺桢, 周莹. 金属氧化物电催化硝酸盐还原合成氨研究进展[J]. 无机材料学报, 2024, 39(9): 979-991. |
[3] | 刘鹏东, 王桢, 刘永锋, 温广武. 硅泥在锂离子电池中的应用研究进展[J]. 无机材料学报, 2024, 39(9): 992-1004. |
[4] | 黄洁, 汪刘应, 王滨, 刘顾, 王伟超, 葛超群. 基于微纳结构设计的电磁性能调控研究进展[J]. 无机材料学报, 2024, 39(8): 853-870. |
[5] | 陈乾, 苏海军, 姜浩, 申仲琳, 余明辉, 张卓. 超高温氧化物陶瓷激光增材制造及组织性能调控研究进展[J]. 无机材料学报, 2024, 39(7): 741-753. |
[6] | 王伟明, 王为得, 粟毅, 马青松, 姚冬旭, 曾宇平. 以非氧化物为烧结助剂制备高导热氮化硅陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 634-646. |
[7] | 蔡飞燕, 倪德伟, 董绍明. 高熵碳化物超高温陶瓷的研究进展[J]. 无机材料学报, 2024, 39(6): 591-608. |
[8] | 吴晓晨, 郑瑞晓, 李露, 马浩林, 赵培航, 马朝利. SiCf/SiC陶瓷基复合材料高温环境损伤原位监测研究进展[J]. 无机材料学报, 2024, 39(6): 609-622. |
[9] | 赵日达, 汤素芳. 多孔碳陶瓷化改进反应熔渗法制备陶瓷基复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 623-633. |
[10] | 方光武, 谢浩元, 张华军, 高希光, 宋迎东. CMC-EBC损伤耦合机理及一体化设计研究进展[J]. 无机材料学报, 2024, 39(6): 647-661. |
[11] | 张幸红, 王义铭, 程源, 董顺, 胡平. 超高温陶瓷复合材料研究进展[J]. 无机材料学报, 2024, 39(6): 571-590. |
[12] | 张慧, 许志鹏, 朱从潭, 郭学益, 杨英. 大面积有机-无机杂化钙钛矿薄膜及其光伏应用研究进展[J]. 无机材料学报, 2024, 39(5): 457-466. |
[13] | 李宗晓, 胡令祥, 王敬蕊, 诸葛飞. 氧化物神经元器件及其神经网络应用[J]. 无机材料学报, 2024, 39(4): 345-358. |
[14] | 鲍可, 李西军. 化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展[J]. 无机材料学报, 2024, 39(3): 233-258. |
[15] | 胡梦菲, 黄丽萍, 李贺, 张国军, 吴厚政. 锂/钠离子电池硬碳负极材料的研究进展[J]. 无机材料学报, 2024, 39(1): 32-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||