【信息功能】电介质储能材料(202506)
相对于聚合物等储能介质材料, 电介质陶瓷具有温度稳定性好和循环寿命长的优点, 是制备脉冲功率储能电容器的优秀候选材料。但目前电介质陶瓷的储能密度相对较低, 不能满足脉冲功率设备小型化的要求。因此, 如何显著提高电介质陶瓷的储能密度成为近年来功能陶瓷研究的热点之一。
为了促进介电储能陶瓷相关研究发展,本刊推出"电介质储能陶瓷"虚拟专题,供广大学者参考!
反铁电材料凭借超高的功率密度, 在电介质能量存储领域具有极高的研究热度。锆酸铅(PbZrO3, PZO)是反铁电材料的典型代表, 也是研究最为广泛的反铁电材料之一。如何提升PZO基材料的储能性能是目前的研究重点。本工作在La3+掺杂PZO的基础上, 进一步将小半径的Sr2+掺入到PZO钙钛矿结构的A位, 实现了PZO基反铁电薄膜储能性能的进一步提升。采用溶胶-凝胶法制备了A位La/Sr共掺杂Pb0.94-xLa0.04SrxZrO3(Sr-PLZ-x, x = 0, 0.03, 0.06, 0.09, 0.12)反铁电薄膜, 系统研究了不同Sr2+掺杂量对Sr-PLZ-x反铁电薄膜的晶体结构, 以及铁电性能、储能性能和疲劳性能等的影响。结果表明:随着Sr2+掺杂量x的增加, Sr-PLZ-x薄膜的晶格常数不断减小, 薄膜的饱和极化强度先略有增加并保持, 后逐渐降低。同时, Sr-PLZ-x薄膜的容忍因子逐步降低, 转折电场不断增大, 反铁电性逐渐增强, 击穿场强有所提高, 储能性能得到提高。在x=0.03时, Sr-PLZ-x反铁电薄膜的储能密度和储能效率分别达到31.7 J/cm3和71%, 储能性能最优。同时掺入Sr2+也使得Sr-PLZ-x反铁电薄膜的疲劳性能进一步优化, 其中x=0.12组分薄膜样品在经历了107次循环后, 储能密度和储能效率仅有3.4%和2.7%的衰减。综上所述, A位La/Sr共掺杂可有效提高PZO基反铁电薄膜的储能性能。
反铁电材料由于电场诱导的反铁电-铁电相变而在高性能介质储能电容器应用中显示出极大的潜力。然而, 场致相变带来大的极化滞后使得反铁电材料难以同时获得高储能密度(Wrec)和高储能效率(η)。本工作通过在0.76NaNbO3-0.24(Bi0.5Na0.5)TiO3中引入第三组元Bi(Mg0.5Ti0.5)O3调控其弛豫特性, 改善了NaNbO3基无铅反铁电陶瓷的储能性能。采用传统固相合成法制备了(0.76-x)NaNbO3-0.24(Bi0.5Na0.5)TiO3-xBi(Mg0.5Ti0.5)O3无铅弛豫反铁电陶瓷材料, 并研究了该材料的相结构、微观形貌以及介电、储能和充放电特性。结果表明, 引入Bi(Mg0.5Ti0.5)O3在不改变基体反铁电正交R相结构的基础上明显增强了陶瓷的介电弛豫特性, 显著减小了陶瓷的极化滞后性。特别是在x=0.050组成中实现了具有极低滞后的类线性电滞回线。同时, 陶瓷的显微形貌还得到明显改善, 介电常数降低, 击穿场强显著提高。因此, x=0.050的组成在30 kV/mm的中等电场下同时获得了高的储能密度Wrec=3.5 J/cm3与储能效率η=93%。此外, x=0.050组成还显示出优异的充放电特性, 在20 kV/mm下具有高功率密度PD=131(1±1%) MW/cm3、高放电能量密度WD=1.66(1±6%) J/cm3以及快的放电速率t0.9<290 ns。该充放电特性在25~125 ℃的宽温区内保持良好的稳定性。这些研究结果表明, 0.71NaNbO3-0.24(Bi0.5Na0.5)TiO3-0.050Bi(Mg0.5Ti0.5)O3陶瓷是一种非常有应用潜力的高功率储能电容器介质材料。
电介质薄膜是通过介质极化方式存储静电能的一种材料, 以其高功率密度和高充放电效率, 在电子器件领域得到广泛应用。目前, 储能密度较低和温度稳定性差仍是电介质储能薄膜的缺陷。本研究采用溶胶-凝胶法在Pt/Ti/SiO2/Si衬底上制备了0.9BaTiO3-0.1Bi(Ti1/2Mg1/2)O3(0.9BT-0.1BMT)薄膜, 通过引入BMT期望获得高储能密度及宽温度稳定性, 并研究了退火温度对薄膜的相组成和微观形貌的影响。研究结果表明, 退火温度过高会导致薄膜的致密性明显降低并伴随晶粒尺寸增大, 750 ℃是最佳的退火温度。综合性能研究发现, 1 kHz下, 薄膜的室温介电常数为399, 介电损耗为5.8%。薄膜在各测试频率下的介电温度稳定性满足X9R标准, ∆C/C25 ℃≤±13.9%。通过Currie-Weiss关系计算得到薄膜的弛豫系数(Relaxor value)γ值为≈1.96, 说明其具有明显的弛豫特性。储能特性研究显示, 薄膜的室温储能密度Wrec达51.9 J/cm3, 室温~200 ℃的宽温度范围内, 储能密度Wrec>20 J/cm3, 可释放能量效率η>65%(1600 kV/cm)。在脉冲放电测试中, 薄膜的脉冲放电时间τ0.9保持在15 μs以内, 且具有优异的频率、温度和循环可靠性。本研究所制备的0.9BT-0.1BMT铁电薄膜具有出色的储能特性和宽温度稳定性, 具备在高温环境中应用的潜力。
铁电超晶格是由两种或两种以上的铁电材料或非铁电材料在晶胞尺度下交替生长而形成,并具有层状周期性结构的人工薄膜材料。铁电超晶格由于其中存在大量的异质界面, 异常显著的界面效应使其具有优异的铁电、压电、介电和热释电等性能, 甚至表现出其构成材料不具备的新功能特性。铁电超晶格不仅为研究复杂氧化物材料界面电荷和晶格之间的相互作用提供了一个理想的平台, 还将在下一代集成铁电器件中发挥不可或缺的作用。随着制备和表征手段不断进步, 研究人员能够在原子尺度上设计和调控铁电超晶格的微结构和化学成分以提高铁电超晶格的功能特性。铁电极化是铁电薄膜材料最基本的性质, 除了用于信息存储, 还在调节集成铁电器件(如压电器件、光伏器件和电热器件)的能量转换性能方面也发挥着重要作用。因此, 铁电超晶格的铁电极化强度的大小直接决定了由其构成的集成铁电器件的功能特性和实际应用价值。本文首先介绍了铁电超晶格的结构特征、分类以及几种典型的功能特性, 然后结合近期的研究结果重点阐述了影响铁电超晶格极化性能的几种因素, 包括应变效应、静电耦合效应、缺陷效应和周期厚度等, 最后展望了铁电超晶格的未来研究方向, 以期为该领域的研究提供参考。
薄膜电容器是现代电力装置与电子设备的核心电子元件, 受限于薄膜介质材料的介电常数偏低, 当前薄膜电容器难以获得高储能密度(指有效储能密度, 即可释放电能密度), 从而导致薄膜电容器体积偏大, 应用成本过高。将具有高击穿场强的聚合物与高介电常数的纳米陶瓷颗粒复合, 制备聚合物/陶瓷复合电介质, 是实现薄膜电容器高储能密度的有效策略。对于单层结构的0-3型聚合物/陶瓷复合电介质, 其介电常数与击穿场强难以同时获得有效提升, 限制了储能密度的进一步提高。为了解决此矛盾, 研究者们叠加组合高介电常数的复合膜与高击穿场强的复合膜, 制备了2-2型多层复合电介质, 能够协同调控极化强度与击穿场强来获取高储能密度。研究表明, 调控多层复合电介质的介观结构与微观结构, 可以实现优化电场分布、协同调控介电常数与击穿场强等目标。本文综述了近年来包括陶瓷/聚合物和全有机聚合物在内的多层聚合物基复合电介质的研究进展,重点阐述了多层结构调控策略对储能性能的提升作用,总结了聚合物基多层复合电介质的储能性能增强机制, 并讨论了当前多层复合电介质面临的挑战和发展方向。
与其它储能设备相比, 由介电复合材料制得的介质电容器在快速充放电能力与高功率密度方面极具优势, 如何提高介电复合材料能量密度与优化其击穿性能已成为当前研究热点之一。为进一步调控并兼顾介电常数与击穿性能, 本工作基于DBM(Dielectric Breakdown Model, 介电击穿模型), 采用有限元数值模拟, 研究了无机填料的分布对柔性聚二甲硅氧烷(PDMS)基介电复合材料体系的电场与发生介电击穿时击穿损伤形貌演变的具体影响。研究结果表明: 填料与基体边界处存在较大的介电差异, 可以使用较大介电常数的聚合物基体或较小介电常数的无机填料来减小其界面处的高电场区域, 继而提高复合材料的耐击穿能力;同时发现当无机填料分散更均匀时, 其树状损伤通道更容易产生分支, 此种情况将使介电击穿的树状损伤通道的损伤位点增多, 延缓其损伤速度, 继而提高复合材料的耐击穿性能。该研究结果将为开发高储能密度且具有优异击穿性能的有机-无机复合电介质材料提供坚实的理论依据。
工业级脉冲储能多层瓷介电容器(MLCC)是现阶段国内研制和生产电子启动装置的重要元器件, 针对国内主要有机薄膜电容器尺寸大、寿命短、可靠性较低的不足, 本研究采用传统固相反应法, 制备了SrTiO3和CaTiO3基的脉冲储能介质陶瓷材料, 研究了微量助烧剂掺杂, 以及Sr2+/Ca2+相互掺杂对陶瓷材料的介电性能的影响, 并进一步制备和研究了以(Sr,Ca)TiO3为基体MLCC性能。实验结果表明: 通过加入质量分数1.0%的助烧剂, 引入微量Bi3+ 可取代Sr2+, 提高了SrTiO3材料的介电常数, 而Bi3+对CaTiO3基材料的介电性能无明显影响; Mn元素有效抑制高温烧结中Ti4+的还原, 降低介电损耗; 加入助烧剂有效降低瓷粉的烧结温度, 提高材料的致密性。(SrxCa1-x)TiO3体系的MLCC可保持较高的介电常数和较低的介电损耗, 当 x=0.4 时, 其介电损耗tanδ=1.8×10-4, 击穿强度为59.38 V/μm, 高低温放电电流变化率为±7%, 放电稳定, 在常温和高温(125 ℃)下经1000次循环充放电实验均未失效, 是一种在不同电场强度下具有相对较优的容量稳定性以及较高可靠性的脉冲特性(Sr,Ca)TiO3基电容器陶瓷介质材料。
0.96NaNbO3-0.04CaZrO3(简称NNCZ)陶瓷在室温下展现出稳定的双电滞回线, 但是其储能密度、储能效率和击穿强度都比较低, 限制其成为储能材料。本工作通过掺杂Fe2O3, 利用Fe 3+离子变价的特点, 实现NNCZ储能性能的优化。采用传统固相法制备了(0.96NaNbO3-0.04CaZrO3)-xFe2O3(简称NNCZ-xFe)反铁电储能陶瓷, 并对样品的相结构、微观形貌、电学性能和储能性能进行了表征, 重点研究了Fe2O3掺杂量对NNCZ陶瓷介电和储能性能的影响规律。结果表明, 样品均具有单一的钙钛矿结构, 掺杂Fe2O3能明显降低NNCZ陶瓷的烧结温度, 晶粒平均尺寸随着掺杂量增大先减小后增大, 掺杂量x=0.02时, 晶粒平均尺寸最小(5.04 mm), 且具有较好的储能性能。室温下, NNCZ-0.02Fe击穿强度为230 kV/cm, 击穿前的有效储能密度和储能效率分别为1.57 J/cm 3和55.74%。在125 ℃和外加电场为180 kV/cm下, NNCZ-0.02Fe的储能密度为4.53 J/cm 3。掺杂Fe2O3使NNCZ陶瓷的烧成温度降低, 氧空位的迁移速率下降, 抑制晶粒的长大, 同时降低了介电损耗, 使得击穿强度增加; 适量氧空位钉扎使得反铁电相向铁电相相翻转变得困难, 避免出现哑铃状双电滞回线, 从而提高储能效率。本研究结果表明NNCZ-xFe在电介质储能领域具有潜在应用价值。
铌酸钾钠(K0.5Na0.5NbO3, KNN)基陶瓷具有充放电速度快、透明度高、应用温度范围宽、使用寿命长等优点, 在脉冲功率器件等领域具有广阔的应用前景。通过改性技术提高铌酸钾钠基陶瓷的电、光性能是该方向的研究热点。本研究采用固相法制备0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3(x=0, 0.1, 0.2, 0.3)陶瓷(简称0.825KNN- 0.175SLSN), 研究La2O3掺杂对其相结构、微观形貌、光学、介电、铁电及储能性能的影响。研究结果表明: 0.825KNN- 0.175SLSN陶瓷具有高对称性的伪立方相结构; 随着La2O3掺杂量增大, 陶瓷的平均晶粒尺寸减小, 相变温度(Tm)及饱和极化强度(Pmax)增大, 达到峰值后下降。在x=0.3时, 该体系陶瓷表现出优异的透明性, 在可见光波长(780 nm)及近红外波长(1200 nm)范围内透过率分别达65.2%及71.5%, 同时实现了310 kV/cm的击穿场强和1.85 J/cm 3的可释放能量密度。