[1] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc., 1997, 144(5): 1609–1613.[2] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater., 2002, 1(2): 123–128.[3] Yang S F, Zavalij P Y, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem. Commun., 2001, 3(9): 505–508.[4] Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. J. Power Sources, 2001, 97-98: 503–507.[5] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid- State Lett., 2001, 4(10): 170–172.[6] Piana M, Cushing B L, Goodenough J B, et al. A new promising sol-gel synthesis of phospho-olivines as environmentally friendly cathode materials for Li-ion cells. Solid State Ionics, 2004, 175(1-4): 233–237.[7] Park K S, Kang K T, Lee S B, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method. Mater. Res. Bull., 2004, 39(12): 1803–1810.[8] Shiraishi K, Dokko K, Kanamura K. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. J. Power Sources, 2005, 146(1/2): 555–558.[9] Song M S, Kang Y M, Kim J H, et al. Simple and fast synthesis of LiFePO4-C composite for lithium rechargeable batteries by ball-milling and microwave heating. J. Power Sources, 2007, 166(1): 260–265.[10] Wang L, Huang Y, Jiang R, et al. Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating. Electrochim. Acta, 2007, 52(24): 6778–6783.[11] Beninati S, Damen L, Mastragostino M. MW-assisted synthesis of LiFePO4 for high power applications. J. Power Sources, 2008, 180(2): 875–879.[12] Bilecka I, Hintennach A, Djerdj I, et al. Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. J. Mater. Chem., 2009, 19(29): 5125–5128.[13] Gao J, Li J J, He X M, et al. Synthesis and electrochemical characteristics of LiFePO4/C cathode materials from different precursors. Int. J. Electrochem. Sci., 2011, 6(7): 2818–2825.[14] Ma J, Li B H, Du H D, et al. Inorganic-based Sol-Gel synthesis of nano-structured LiFePO4/C composite materials for lithium ion batteries. J. Solid State Electrochem., 2012, 16(4): 1353–1362.[15] Paques-Ledent M T, Tarte P. Vibrational studies of olivine-type compounds-II orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim. Acta A, 1974, 30(3): 673–689.[16] Burma C M, Frech R. Raman and FTIR spectroscopic study of LixFePO4: 0[17] Murugavel R, Gogoi N. Structural variations in layered alkaline earth metal cyclohexyl phosphonates. Bull. Mater. Sci., 2009, 32(3): 321–328.[18] Panicker C Y, Varghese H T, Philip D. FT-IR, FT-Raman and SERS spectra of vitamin C. Spectrochim. Acta A, 2006, 65(3/4): 802–804.[19] Markevich E, Sharabi R, Haik O, et al. Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. J. Power Sources, 2011, 196(15): 6433–6439.[20] Belharouak I, Johnson C, Amine K. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem. Commun., 2005, 7(10): 983–988.[21] Shiraishi K, Dokko K, Kanamura K. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis. J. Power Sources, 2005, 146(1/2): 555–558.[22] Xu J J, Jain G. A nanocrystalline ferric oxide cathode for rechargeable lithium batteries. Electrochem. Solid-State Lett., 2003, 6(9): 190–193.[23] Reddy M V, Yu T, Sow C H, et al. α-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Adv. Funct. Mater., 2007, 17(15): 2792–2799.[24] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho- olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc., 1997, 144(4): 1188–1194. |