无机材料学报 ›› 2023, Vol. 38 ›› Issue (12): 1427-1433.DOI: 10.15541/jim20230142 CSTR: 32189.14.10.15541/jim20230142
所属专题: 【信息功能】敏感陶瓷(202409); 【信息功能】电致变色与热致变色材料(202312)
收稿日期:
2023-03-20
修回日期:
2023-04-04
出版日期:
2023-08-31
网络出版日期:
2023-08-31
通讯作者:
王金敏, 教授. E-mail: jmwang@usst.edu.cn;作者简介:
牛海滨(1995-), 男, 硕士研究生. E-mail: 202242296@st.usst.edu.cn
基金资助:
NIU Haibin(), HUANG Jiahui, LI Qianwen, MA Dongyun(
), WANG Jinmin(
)
Received:
2023-03-20
Revised:
2023-04-04
Published:
2023-08-31
Online:
2023-08-31
Contact:
WANG Jinmin, professor. E-mail: jmwang@usst.edu.cn;About author:
NIU Haibin (1995-), male, Master candidate. E-mail: 202242296@st.usst.edu.cn
Supported by:
摘要:
钼酸镍(NiMoO4)是一种在储能和催化领域具有优异性能的材料, 但在电致变色领域还缺乏深入探索研究。本研究未使用晶种层, 采用水热法在透明导电玻璃基底上生长了多孔NiMoO4薄膜。采用掠入射X射线衍射仪(GIXRD)、场发射扫描电子显微镜(FESEM)对NiMoO4纳米片薄膜样品的晶相和微观形貌进行了表征, 并研究了NiMoO4薄膜的电化学性能和电致变色性能。结果表明: NiMoO4电致变色薄膜具有多孔结构, 能够为离子迁移提供充足的通道和反应活性位点。因此, NiMoO4薄膜表现出优异的电致变色性能, 其光调制幅度达到79.6%, 着色效率为86.2 cm2·C-1, 着色和褪色时间分别为9.5和12.7 s(在褪色过程存在一个快速和一个慢速步骤), 经过100次着色和褪色循环后光调制幅度仍可以保持最大光调制幅度的99.7%。此外, 该薄膜在0.3 mA·cm-2的电流密度下的面积比电容高达49.59 mF·cm-2。上述优异的性能使NiMoO4纳米片薄膜有望在高性能电致变色器件中得到重要应用。在器件的组装过程中, 探索合适的电解质以及与NiMoO4薄膜相匹配的对电极将是下一步研究工作的重点。
中图分类号:
牛海滨, 黄佳慧, 李倩文, 马董云, 王金敏. 多孔NiMoO4纳米片薄膜的直接水热生长及其电致变色性能[J]. 无机材料学报, 2023, 38(12): 1427-1433.
NIU Haibin, HUANG Jiahui, LI Qianwen, MA Dongyun, WANG Jinmin. Directly Hydrothermal Growth and Electrochromic Properties of Porous NiMoO4 Nanosheet Films[J]. Journal of Inorganic Materials, 2023, 38(12): 1427-1433.
图3 NiMoO4薄膜的电化学性能
Fig. 3 Electrochemical properties of the as-grown NiMoO4 film (a) CV curve at 5 mV·s-1; (b) CV curves at different scanning rates; (c) GCD curves at different current densities;(d) Specific capacitance variations with respect to the current density of the NiMoO4 film
图5 NiMoO4薄膜的电致变色性能
Fig. 5 Electrochromic properties of the as-grown NiMoO4 film (a) Transmittance spectra at the colored and bleached states; (b) Diagram of current density and in-situ transmittance curve at 480 nm obtained by applying square wave potentials of 1.5 V for 20 s and -1.5 V for 30 s; (c) Response time; (d) Optical density variations with respect to the charge density at 480 nm of the NiMoO4 film
[1] | ZHAO W X, WANG J Y, TAM B, et al. Macroporous vanadium oxide ion storage films enable fast switching speed and high cycling stability of electrochromic devices. ACS Applied Materials & Interfaces, 2022, 14(26): 30021. |
[2] | HALDER S, BEHERE R P, GUPTA N, et al. Enhancement of the electrochemical performance of a cathodically coloured organic electrochromic material through the formation of hydrogen bonded supramolecular polymer assembly. Solar Energy Materials and Solar Cells, 2022, 245: 111858. |
[3] | LI F, MA D Y, QIAN J H, et al. One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Solar Energy Materials and Solar Cells, 2019, 192: 103. |
[4] | MA D Y, EH A L S, CAO S, et al. Wide-spectrum modulated electrochromic smart windows based on MnO2/PB films. ACS Applied Materials & Interfaces, 2022, 14(1): 1443. |
[5] | YANG B, MA D Y, ZHENG E M, et al. A self-rechargeable electrochromic battery based on electrodeposited polypyrrole film. Solar Energy Materials and Solar Cells, 2019, 192: 1. |
[6] |
RAI V, SINGH R S, BLACKWOOD D J, et al. A review on recent advances in electrochromic devices: a material approach. Advanced Engineering Materials, 2020, 22(8): 2000082.
DOI URL |
[7] | JO M H, KIM K H, AHN H J. P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices. Chemical Engineering Journal, 2022, 445: 136826. |
[8] | WANG S, XU H B, HAO T T, et al. 3D conifer-like WO3 branched nanowire arrays electrode for boosting electrochromic-supercapacitor performance. Applied Surface Science, 2022, 577: 151889. |
[9] |
WU Q, CONG S, ZHAO Z. Infrared electrochromic property of the colorful tungsten oxide films. Journal of Inorganic Materials, 2021, 36(5): 485.
DOI |
[10] | PHAN G T, VAN PHAM D, PATIL R A, et al. Fast-switching electrochromic smart windows based on NiO-nanorods counter electrode. Solar Energy Materials and Solar Cells, 2021, 231: 111306. |
[11] | XUE J Y, LI W J, SONG Y, et al. Visualization electrochromic- supercapacitor device based on porous Co doped NiO films. Journal of Alloys and Compounds, 2021, 857: 158087. |
[12] | PRASAD A K, PARK J Y, KANG S H, et al. Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage applications. Electrochimica Acta, 2022, 422: 140340. |
[13] |
AKKURT N, PAT S, MOHAMMADIGHAREHBAGH R, et al. Electrochromic properties of graphene doped Nb2O5 thin film. ECS Journal of Solid State Science and Technology, 2020, 9(12): 125004.
DOI |
[14] | OZGUR N A, PAT S, MOHAMMADIGHAREHBAGH R, et al. Substrate effect on electrochromic properties of Nb2O5:TiO2 nanocomposite thin films deposited by thermionic vacuum arc. Vacuum, 2022, 202: 111186. |
[15] |
NAKAYAMA M, KASHIWA Y, SUZUKI K. Electrochromic properties of MnO2-based layered polymer nanocomposite. Journal of the Electrochemical Society, 2009, 156(4): D125.
DOI URL |
[16] |
DI Y F, XIANG J, BU N, et al. Sophisticated structural tuning of NiMoO4@MnCo2O4 nanomaterials for high performance hybrid capacitors. Nanomaterials, 2022, 12(10): 1674.
DOI URL |
[17] |
WANG L W, WEI Y M, XU J R, et al. NiMoO4-coated NiCo2O4 nanotip arrays on carbon cloth as flexible and effective electrodes for glu detection. ACS Applied Nano Materials, 2021, 4(11): 11582.
DOI URL |
[18] | RAO T K, ZHOU Y L, JIANG J, et al. Low dimensional transition metal oxide towards advanced electrochromic devices. Nano Energy, 2022, 100: 107479. |
[19] |
LEI P Y, WANG J H, ZHANG P, et al. Growth of a porous NiCoO2 nanowire network for transparent-to-brownish grey electrochromic smart windows with wide-band optical modulation. Journal of Materials Chemistry C, 2021, 9(40): 14378.
DOI URL |
[20] | CHAVAN H S, HOU B, AHMED A T, et al. Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring. Solar Energy Materials and Solar Cells, 2018, 185: 166. |
[21] |
CAI G F, ZHU R, LIU S Y, et al. Tunable intracrystal cavity in tungsten bronze-like bimetallic oxides for electrochromic energy storage. Advanced Energy Materials, 2022, 12(5): 2103106.
DOI URL |
[22] |
WANG B, LI S M, WU X Y, et al. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage. Physical Chemistry Chemical Physics, 2016, 18(2): 908.
DOI URL |
[23] |
ZHANG Y, GAO H L, JIA X D, et al. NiMoO4 nanorods supported on nickel foam for high-performance supercapacitor electrode materials. Journal of Renewable and Sustainable Energy, 2018, 10(5): 054101.
DOI URL |
[24] |
CUI S Z, HU Q Z, SUN K J, et al. Nickel-cobalt-layered double hydroxide nanosheets supported on NiMoO4 nanorods with enhanced stability for asymmetric supercapacitors. ACS Applied Nano Materials, 2022, 5(5): 6181.
DOI URL |
[25] |
WANG T, WANG M, HUANG Q, et al. Preparation of lithium titanate thin film for electrochromic smart window by Sol-Gel spin coating method. Journal of Inorganic Materials, 2021, 36(5): 471.
DOI |
[26] | MURUGAN E, GOVINDARAJU S, SANTHOSHKUMAR S. Hydrothermal synthesis, characterization and electrochemical behavior of NiMoO4 nanoflower and NiMoO4/rGO nanocomposite for high-performance supercapacitors. Electrochimica Acta, 2021, 392: 138973. |
[27] |
ZHANG Y, CHANG C R, GAO H L, et al. High-performance supercapacitor electrodes based on NiMoO4 nanorods. Journal of Materials Research, 2019, 34(14): 2435.
DOI URL |
[28] | CAO M L, BU Y, LV X W, et al. Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Applied Surface Science, 2018, 435: 641. |
[29] | CHEN C, YAN D, LUO X, et al. Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high- performance asymmetric supercapacitors. ACS Applied Materials & Interfaces, 2018, 10(5): 4662. |
[30] |
XIAO K, XIA L, LIU G X, et al. Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3(11): 6128.
DOI URL |
[31] |
SONAVANE A C, INAMDAR A I, SHINDE P S, et al. Efficient electrochromic nickel oxide thin films by electrodeposition. Journal of Alloys and Compounds, 2010, 489(2): 667.
DOI URL |
[32] | SUN J Q, LI W Y, ZHANG B J, et al. 3D core/shell hierarchies of MnOOH ultrathin nanosheets grown on NiO nanosheet arrays for high-performance supercapacitors. Nano Energy, 2014, 4: 56. |
[33] | ZHOU K L, QI Z C, ZHAO B W, et al. The influence of crystallinity on the electrochromic properties and durability of NiO thin films. Surfaces and Interfaces, 2017, 6: 91. |
[34] |
ZHANG X, LIU Y, LI R, et al. Cu3(HHTP)2 film-based ionic-liquid electrochromic electrode. Journal of Inorganic Materials, 2022, 37(8): 883.
DOI URL |
[35] | WANG J M, ZHANG L, YU L, et al. A bi-functional device for self- powered electrochromic window and self-rechargeable transparent battery applications. Nature Communications, 2014, 5: 4921. |
[1] | 荀道祥, 罗序维, 周明冉, 何佳乐, 冉茂进, 胡执一, 李昱. 锂硒电池ZIF-L衍生氮掺杂碳纳米片/碳布自支撑电极的电化学性能研究[J]. 无机材料学报, 2024, 39(9): 1013-1021. |
[2] | 施桐, 甘乔炜, 刘东, 张莹, 冯浩, 李强. 自支撑Bi@Cu纳米树电极高效电化学还原CO2制甲酸[J]. 无机材料学报, 2024, 39(7): 810-818. |
[3] | 杨恩东, 李宝乐, 张珂, 谭鲁, 娄永兵. ZnCo2O4-ZnO@C@CoS核壳复合材料的制备及其在超级电容器中的应用[J]. 无机材料学报, 2024, 39(5): 485-493. |
[4] | 甄明硕, 刘晓然, 范向前, 张文平, 严东东, 刘磊, 李晨. 电致变色型智能可视化湿度系统[J]. 无机材料学报, 2024, 39(4): 432-440. |
[5] | 李跃军, 曹铁平, 孙大伟. S型异质结Bi4O5Br2/CeO2的制备及其光催化CO2还原性能[J]. 无机材料学报, 2023, 38(8): 963-970. |
[6] | 王新玲, 周娜, 田亚文, 周明冉, 韩静茹, 申远升, 胡执一, 李昱. SnS2/ZIF-8衍生二维多孔氮掺杂碳纳米片复合材料的锂硫电池性能研究[J]. 无机材料学报, 2023, 38(8): 938-946. |
[7] | 孙佳伟, 宛心怡, 杨婷, 马董云, 王金敏. Ti2Nb10O29薄膜的制备及其电致变色性能[J]. 无机材料学报, 2023, 38(12): 1434-1440. |
[8] | 陈长, 赵若伊, 韩少杰, 王焕燃, 杨群, 高彦峰. 纳米晶液相镀膜制备WO3电致变色薄膜研究和性能优化[J]. 无机材料学报, 2023, 38(11): 1355-1363. |
[9] | 姚仪帅, 郭瑞华, 安胜利, 张捷宇, 周国治, 张国芳, 黄雅荣, 潘高飞. 原位负载Pt-Co高指数晶面催化剂的制备及其电催化性能[J]. 无机材料学报, 2023, 38(1): 71-78. |
[10] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
[11] | 张家强, 邹馨蕾, 王能泽, 贾春阳. 两步电沉积法制备Zn-Fe PBA薄膜及其在电致变色器件中的性能研究[J]. 无机材料学报, 2022, 37(9): 961-968. |
[12] | 张笑宇, 刘永盛, 李然, 李耀刚, 张青红, 侯成义, 李克睿, 王宏志. 基于Cu3(HHTP)2薄膜的离子液体电致变色电极[J]. 无机材料学报, 2022, 37(8): 883-890. |
[13] | 黄郅航, 滕官宏伟, 铁鹏, 范德松. 钙钛矿陶瓷薄膜的电致变色特性[J]. 无机材料学报, 2022, 37(6): 611-616. |
[14] | 张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64. |
[15] | 王金敏, 后丽君, 马董云. 氧化钼电致变色材料与器件[J]. 无机材料学报, 2021, 36(5): 461-470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||