[1] Zhang H, Yu H, Han Y, et al. Rutile TiO2 microspheres with exposed nano-acicular single crystals for dye-sensitized solar cells. Nano Res., 2011, 4(10): 938–947.[2] Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science, 2011, 334(6056): 629–634.[3] Yoon S, Manthiram A. Hollow core-shell mesoporous TiO2 spheres for lithium ion storage. J. Phys. Chem. C, 2011, 115(19): 9410–9416.[4] Wang J, Zhou Y, Hu Y, et al. Facile synthesis of nanocrystalline TiO2 mesoporous microspheres for lithium-ion batteries. J. Phys. Chem. C, 2011, 115(5): 2529–2536.[5] Zhao X, Liu M, Zhu Y. Fabrication of porous TiO2 film via hydrothermal method and its photocatalytic performances. Thin Solid Films, 2007, 515(18): 7127–7134.[6] Zhang W, Zou L, Wang L. Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: a review. Appl. Catal. A, 2009, 371(1/2): 1–9.[7] Li N, Liu G, Zhen C, et al. Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly. Adv. Funct. Mater., 2011, 21(9): 1717–1722.[8] Wang N, Han L, He, H, et al. A novel high-performance photovoltaic–thermoelectric hybrid device. Energy Environ. Sci., 2011, 4(9): 3676–3679.[9] Wang D, Yu B, Wang C, et al. A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater., 2009, 21(19): 1964–1967.[10] Wang H, Miyauchi M, Ishikawa Y, et al. Single-crystalline rutile TiO2 hollow spheres: room-temperature synthesis, tailored visible- light-extinction, and effective scattering layer for quantum dot-sensitized solar cells. J. Am. Chem. Soc., 2011, 133(47): 19102–19109.[11] Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev., 2007, 107(7): 2891–2959.[12] Jung H G, Yoon C S, Prakash J, et al. Mesoporous anatase TiO2 with high surface area and controllable pore size by F ion doping: applications for high-power Li-ion battery anode. J. Phys. Chem. C, 2009, 113(50): 21258–21263.[13] Yuan J, Wang E, Chen Y, et al. Doping mode, band structure and photocatalytic mechanism of B–N-codoped TiO2. Appl. Surf. Sci., 2011, 257(16): 7335–7342.[14] Liu G, Wang X, Chen Z, et al. The role of crystal phase in determining photocatalytic activity of nitrogen doped TiO2. J. Colloid Interface Sci., 2009, 329(2): 331–338.[15] Zhen J W, Bhattcahrayya A, Wu P, et al. The origin of visible light absorption in chalcogen element (S, Se, and Te)-doped anatase TiO2 photocatalysts. J. Phys. Chem. C, 2010, 114(15): 7063–7069.[16] Wang D, Liu Y, Wang C, et al. Highly flexible coaxial nanohybrids made from porous TiO2 nanotubes. ACS Nano, 2009, 3(5): 1249–1257.[17] Wang Q, Zhu K, Reale N R, et al. Constructing ordered sensitized heterojunctions: bottom-up electrochemical synthesis of p-type semiconductors in oriented n-TiO2 nanotube arrays. Nano Lett., 2009, 9(2): 806–813.[18] Tanabe I, Matsubara K, Sakai N, et al. Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film. J. Phys. Chem. C, 2011, 115(5): 1695–1701.[19] Wu X F, Song H Y, Yoon J M, et al. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir, 2009, 25(11): 6438–6447.[20] Park W Y, Kim G H, Seok J Y, et al. A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology, 2010, 21(19): 195201–1–5.[21] Zheng Z, Huang B, Qin X, et al. Facile in situ synthesis of visible- light plasmonic photocatalysts M@TiO2(M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J. Mater. Chem., 2011, 21: 9079–9087.[22] Zhang L, Xia D, Shen Q. Synthesis and characterization of Ag@TiO2 core-shell nanoparticlesand TiO2 nanobubbles. J. Nanopart. Res., 2006, 8(1): 23–28.[23] Feng C, Zhang J, Lang R, et al. Unusual photo-induced adsorption– desorption behavior of propylene on Ag/TiO2 nanotube under visible light irradiation. Appl. Surf. Sci., 2011, 257(6): 1864–1870.[24] Sun Y H, Zhang M, Dong F, et al. Effect of Cl? anions on photocatalytic decomposition of gaseous ozone over Au@Ag/TiO2 catalyst. Res. Chem. Intermed., 2009, 35(6/7): 817–826.[25] Cui Y, Liu L, Li B, et al. Fabrication of tunable core-shell structured TiO2 mesoporous microspheres using linear polymer polyethylene glycol as templates. J. Phys. Chem. C, 2010, 114(6): 2434–2439.[26] Chastain J, Moulder J F, Stickle W F, et al. Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corporation. 1992: 44–45, 72–74. [27] Xu S, Ng J, Zhang X, et al. Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water. Int J. Hydrogen. Energy, 2010, 35(11): 5254–5261. |