[1] |
HUANG H N, SHI R, LI Z H, et al. Triphase photocatalytic CO2reduction over silver-decorated titanium oxide at a gas-water boundary. Angewandte Chemie International Edition, 2022, 61(17): 202200802.
|
[2] |
CHENG L, YUE X Y, FAN J J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions. Advanced Materials, 2022, 34(27): 2200929.
|
[3] |
FENG X H, PAN F P, TRAN B Z, et al. Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO vercoating and photodeposited silver nanoparticles. Catalysis Today, 2020, 339: 328.
DOI
URL
|
[4] |
LIU Y, LI L L, LI Q L, et al. Fluorine doped porous boron nitride for efficient CO2 capture and separation: a DFT study. Applied Surface Science, 2021, 556: 149775.
|
[5] |
JI S F, QU Y, WANG T, et al. Rare-earth single erbium atoms for enhanced photocatalytic CO2reduction. Angewandte Chemie International Edition, 2020, 59(26): 10651.
DOI
URL
|
[6] |
WANG Z Q, ZHU J C, ZU X L, et al. Selective CO2 photoreduction to CH4via Pdδ+-assisted hydrodeoxygenation over CeO2 nanosheets. Angewandte Chemie International Edition, 2022, 61(30): 202203249.
|
[7] |
XIA P F, CAO S W, ZHU B C, et al. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angewandte Chemie International Edition, 2020, 59(13): 5218.
DOI
URL
|
[8] |
WANG T, CHEN L, CHEN C, et al. Enginneering catalytic interfaces in Cuδ+/CeO2-TiO2 photocatalysts for synergistically boosting CO2reduction to ethylene. ACS Nano, 2022, 16(2): 2306.
DOI
URL
|
[9] |
MA R, ZHANG S, WEN T, et al. A critical review on visible- light-response CeO2-based photocatalysts with enhanced photoxidation of organic pollutants. Catalysis Today, 2019, 335: 20.
DOI
URL
|
[10] |
CHANG F, YAN W J, WANG X M, et al. Strengthened photocatalytic removal of bisphenol a by robust 3D hierarchical n-p heterojunctions Bi4O5Br2-MnO2via boosting oxidative radicals generation. Chemical Engineering Journal, 2022, 428: 131223.
|
[11] |
XU M W, WANG Y Y, HA E N, et al. Reduced graphene oxide/Bi4O5Br2 nanocomposite with synergetic effects on improving adsorption and photocatalytic activity for the degradation of antibiotics. Chemosphere, 2021, 265: 129013.
|
[12] |
WANG S C, WANG L Z, HUANG W. Bismuth-based photocatalysts for solar energy conversion. Journal of Materials Chemistry A, 2020, 8(46): 24307.
DOI
URL
|
[13] |
JIN X L, LÜ C D, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity. Nano Energy, 2019, 64: 103955.
|
[14] |
DONG F. Photocatalytic clean energy conversion boosted by vacancy-rich 2D/2D heterostructure. Acta Physico-Chimica Sinica. 2021, 37(8): 2012010.
|
[15] |
CAO W, JIANG C Y, CHEN C, et al. A novel Z-Scheme CdS/Bi4O5Br2 heterostructure with mechanism analysis: enhanced photocatalytic performance. Journal of Alloys and Compounds, 2021, 861: 158554.
|
[16] |
FU J W, XU Q L, LOW J X, et al. Ultrathin 2D/2D WO3/g-C3N4step-scheme H2-production photocatalyst. Applied Catalysis B: Environmental, 2019, 243: 556.
|
[17] |
YE L Q, JIN X L, LIU C, et al. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Applied Catalysis B: Environmental, 2016, 187: 281.
DOI
URL
|
[18] |
QIU F Z, LI W J, WANG F Z, et al. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. Journal of Colloid and Interface Science, 2017, 493: 1.
DOI
URL
|
[19] |
ZHOU Y H, PERKET J M, ZHOU J. Growth of Pt nanoparticles on reducible CeO2(111) thin films: effect of nanostructures and redox properties of ceria. The Journal of Physical Chemistry C, 2010, 114(27): 11853.
DOI
URL
|
[20] |
BECHE E, CHARVIN P, PERARNAU D, et al. Ce3d XPS investigation of cerium oxides and mixed cerium oxide(CexTiyOz). Surface and Interface Analysis, 2008, 40(3/4): 264.
DOI
URL
|
[21] |
ZHAO C Y, LIU L J, ZHANG Q Y, et al. Photocatalytic conversion of CO2 and H2O to fuels by nanostructured Ce-TiO2/ SBA-15 composites. Catalysis Science & Technology, 2012, 2(12): 2558.
|
[22] |
DING Y, HUANG L S, ZHANG J B, et al. Ru-doped, oxygen- vacancy-containing CeO2 nanorods toward N2 electroreduction. Journal of Materials Chemistry A, 2020, 8: 7229.
DOI
URL
|
[23] |
WANG Z H, BAI Y X, LI Y P, et al. Bi2O2CO3/red phosphorus S-scheme heterojunction for H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2022, 609: 320.
DOI
URL
|