[1] Xin S, Guo Y G, Wan L J. Nanocarbon networks for advanced rechargeable lithium batteries. Accounts of Chemical Research, 2012, 45(10): 1759-1769.[2] Wu X L, Liu Q, Guo Y G, et al. Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11(7): 1468-1471.[3] Yin Y X, Xin S, Wan L J. SnO2 hollow spheres: polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Science China-Chemistry, 2012, 55(7): 1314-1318.[4] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366-377.[5] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.[6] Park O K, Cho Y, Lee S, et al. Who will drive electric vehicles, olivine or spinel? Energy & Environmental Science, 2011, 4(5): 1621-1633. [7] Cao A M, Hu J S, Wan L J. Morphology control and shape evolution in 3D hierarchical superstructures. Science China-Chemistry, 2012, 55(11): 2249-2256. [8] Gwon H, Seo D H, Kim S W, et al. Combined first-principle calculations and experimental study on multi-component olivine cathode for lithium rechargeable batteries. Advanced Functional Materials, 2009, 19(20): 3285-3292.[9] Yamada A, Kudo Y, Liu K Y. Reaction mechanism of the olivine-type Lix(Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1). Journal of the Electrochemical Society, 2001, 148(7): A747-A754.[10] Martha S K, Grinblat J, Haik O, et al. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angewandte Chemie International Edition, 2009, 48(45): 8559-8563.[11] Wang H L, Yang Y, Liang Y Y, et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angewandte Chemie International Edition, 2011, 50(32): 7364-7368.[12] Tan Z, Wang X Y, Zhou H H. Highly energy density olivine cathode material synthesized by coprecipitation technique. Electrochimica Acta, 2012, 90(15): 597-603.[13] Park H S, Kim T H, Lee M H, et al. Catalytic carbonization of an uncarbonizable precursor by transition metals in olivine cathode materials of lithium ion batteries. Journal of Materials Chemistry, 2012, 22: 20305-20310.[14] Oh S M, Myung S T, Park J B, et al. Double-structured LiMn0.85Fe0.15PO4 coordinated with LiFePO4 for rechargeable lithium batteries. Angewandte Chemie International Edition, 2012, 51(8): 1853-1856.[15] Zou Q Q, Zhu G N, Xia Y Y. Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with LiTi5O12 anode. Journal of Power Sources, 2012, 206(15): 222-229.[16] Zhong Y J, Li J T, Wu Z G, et al. LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery. Journal of Power Sources, 2013, 234(15): 217-222.[17] Prosini P P, Lisi M, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics, 2002, 148(1/2): 45-51.[18] Wu X L, Jiang L Y, Cao F F, et al. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Advanced Materials, 2009, 21(25/26): 2710-2714.[19] Zhang C J, He X, Kong Q S, et al. A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm, 2012, 14: 4344-4349.[20] Wang T, Yin Y, Liu H W. Synthesis of FePO4 from Fe2O3 and its application in synthesizing cathode material LiFePO4. Journal of Inorganic Materials, 2013, 28(2): 207-211.[21] Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chemical Communications, 2012, 48: 1201-1217.[22] Su J, Wu X L, Yang C P, et al. Self-assembled LiFePO4/C nano/microspheres by using phytic acid as phosphorus source. The Journal of Physical Chemistry C, 2012, 116: 5019-5024.[23] Hu Y S, Guo Y G, Dominko R, et al. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Advanced Materials, 2007, 19(15): 1963-1966.[24] Wang Z H, Pang Q Q, Deng K J, et al. Effects of titanium incorporation on phase and electrochemical performance in LiFePO4 cathode material. Electrochimica Acta, 2012, 781(1): 576-584.[25] Tang K, Yu X, Sun J, et al. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta, 2011, 56(13): 4869-4875.[26] Liu H, Li C, Zhang H P, et al. Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. Journal of Power Sources, 2006, 159(1): 717-720.[27] Wang X J, Yu X Q, Li H, et al. Li-storage in LiFe1/4Mn1/4 Co1/4Ni1/4PO4 solid solution. Electrochemistry Communications, 2008, 10(9): 1347-1350.[28] Xie J, Imanishi N, Matsumura T, et al. Orientation dependence of Li-ion diffusion kinetics in LiCoO2 thin films prepared by RF magnetron sputtering. Solid State Ionics, 2008, 179(9): 362-370.[29] Christopher M B, Roger F. Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1). Journal of the Electrochemical Society, 2004, 151(7): A1032-A1038.[30] Weppner W, Huggins R A. Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. Journal of the Electrochemical Society, 1977, 124(10): 1569-1578.[31] Wang Q, Li H, Huang X, et al. Determination of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads with potential relaxation technique. Journal of the Electrochemical Society, 2001, 148(7): A737-A741.[32] Chen Q Q, Qiao X C, Wang Y B, et al. Electrochemical performance of Li3-xNaxV2(PO4)3/C composite cathode materials for lithium ion batteries. Journal of Power Sources, 2012, 201: 267-273.[33] Liao X Z, Ma Z F, Gong Q, et al. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte. Electrochemistry Communications, 2008, 10(5): 691-694. |