[1] Wang C W, Sastry A M. Mesoscale modeling of a Li-ion polymer cell. J. Electrochem. Soc., 2007, 154(11): A1035-A1047.
[2] Du W B, Gupta A, Zhang X C, et al. Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance. Int. J. Heat Mass Transfer, 2010, 53(17/18): 3552-3561.
[3] Gupta A, Seo J H, Zhang X C, Du, et al. Effective transport properties of LiMn2O4 electrode via particle-scale modeling. J. Electrochem. Soc., 2011, 158(5): A487-A497.
[4] Spanne P, Thovert J F, Jacquin C J, et al. Synchrotron computed microtomography of porous media: topology and transports. Phys. Rev. Lett., 1994, 73(14): 2001-2004.
[5] Yoshizawa N, Tanaike O, Hatori H, et al. TEM and electron tomography studies of carbon nanospheres for lithium secondary batteries. Carbon, 2006, 44(12): 2558-2564.
[6] Groeber M A, Haley B K, Uchic M D, et al. 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater. Charact., 2006, 57(4/5): 259-273.
[7] Shearing P R, Golbert J, Chater R, et al. 3D Reconstruction of SOFC anodes using a focused ion beam lift-out technique. J. Chem. Eng. Sci., 2009, 64(17): 3928-3933.
[8] Quiblier J. A new three-dimensional modeling technique for studying porous media. J. Colloid Interface Sci., 1984, 98(1): 84-102.
[9] Yeong C L Y, Torquato S. Reconstructing random media. Phys. Rev. E., 1998, 57(1): 495-506.
[10] Kim S H, Pitsch H. Reconstruction and effective transport properties of the catalyst layer in PEM fuel cells. J. Electrochem. Soc., 2009, 156(6): B673-B681.
[11] Stig Bakke, P-l-Eric -ren. 3-D pore-scale modelling of sandstones and flow simulations in the pore networks. J. SPE, 1997, 2(2): 136-149.
[12] Stephenson D E, Walker B C, Skelton C B, et al. Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes. J. Electrochem. Soc., 2011, 158(7): A781-A789.
[13] Carson J K S, Lovatt J, Tanner D J, et al. Predicting the effective thermal conductivity of unfrozen, porous foods. J. Food. Eng., 2006, 75(3): 297-307.
[14] Wang J F, Carson J K, North M F, et al. A new approach to modeling the effective thermal conductivity of heterogeneous materials. Int. J. Heat Mass Transfer, 2006, 49(17/18): 3075-3083.
[15] Thovert J F, Wary F, Adler P M. Thermal conductivity of random media and regular fractals. J. Appl. Phys., 1990, 68(8): 3872–3883.
[16] Jiang F, Sousa A C M. Effective thermal conductivity of heterogeneous multi-component materials: an SPH implementation. Heat and Mass Transfer, 2006, 43(5): 479-491.
[17] Barta S, Dieska P. Effective thermal conductivity of particulate composite materials. Kovove Mater., 2002, 40(2): 99-112.
[18] Wang M, Wang K, Pan N, et al. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E., 2007, 75(3): 036702-1-10.
[19] Joshi A S, Grew K N, Izzo J R, et al. Lattice boltzmann modeling of three-dimensional, multicomponent mass diffusion in a solid oxide fuel cell anode. J. Fuel Cell Sci. Technol., 2010, 7(1): 011006-1-8.
[20] Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, 2002: 23-58.
[21] Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys. Fluids, 1997, 9(6): 1591-1598.
[22] Wang J K, Wang M, Li Z X. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer. Int. J. Thermal Sci., 2007, 46(3): 228-234.
[23] Ziegler D. Boundary conditions for lattice boltzmann simulations. J. Stat. Phys.,1993,71(5/6): 1171-1177
[24] Thorat V, Stephenson D E, Zacharias N A, et al. Quantifying tortuosity in porous Li-ion battery materials. J. Power Sources, 2009, 188(2): 592-600. |