[1] |
WU Y C, FU P Z, ZHENG F, et al. Growth of a nonlinear optical crystal La2CaB10O19 (LCB). Optical Materials, 2003, 23(1/2): 373.
DOI
URL
|
[2] |
JING F L, WU Y C, FU P Z. Growth of La2CaB10O19 single crystals from CaO-Li2O-B2O3 flux. Journal of Crystal Growth, 2005, 285(1/2): 270.
DOI
URL
|
[3] |
JING F L, WU Y C, FU P Z. Growth of La2CaB10O19 single crystals by top-seeded solution growth technique. Journal of Crystal Growth, 2006, 292(2): 454.
DOI
URL
|
[4] |
WU Y C, LIU J G, FU P Z, et al. A new lanthanum and calcium borate La2CaB10O19. Chemistry of Materials, 2001, 13(3): 753.
DOI
URL
|
[5] |
WANG G L, LU J H, CUI D F, et al. Efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal. Optics Communications, 2002, 209(4/5/6): 481.
DOI
URL
|
[6] |
BRENIER A, WU Y, ZHANG J X, et al. Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal. Journal of Applied Physics, 2010, 108(9): 093101.
DOI
URL
|
[7] |
ZHANG X Y, WU Y, SHAN F X, et al. Growth and spectroscopic properties of Sm3+-doped La2CaB10O19 crystal. Journal of Crystal Growth, 2014, 399: 39.
DOI
URL
|
[8] |
ZU Y L, ZHANG J X, ZHENG F, et al. Growth and optical properties of Pr3+: La2CaB10O19 crystal. Journal of Rare Earths, 2009, 27(6): 911.
DOI
URL
|
[9] |
BRENIER A, WU Y, ZHANG J X, et al. Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19. Applied Physics B, 2012, 107: 59.
DOI
URL
|
[10] |
SHAN F X, FU Y, ZHANG G C, et al. Growth and spectroscopic properties of Tb3+ doped La2CaB10O19 crystal. Optical Materials, 2015, 49: 27.
DOI
URL
|
[11] |
GUO R, WU Y C, FU P Z, et al. Optical transition probabilities of Er3+ ions in La2CaB10O19 crystal. Chemical Physics Letters, 2005, 416(1/2/3): 133.
DOI
URL
|
[12] |
ZHANG J X, HAN L, WU Y, et al. Multiple-wavelength lasing by multiform self-frequency conversion in Nd3+-doped La2CaB10O19 crystals. Applied Physics B, 2011, 103: 853.
DOI
URL
|
[13] |
DUBINSKII M A, SCHEPLER K L, SEMASHKO V V, et al. Spectroscopic analogy approach in selective search for new Ce3+-activated all-solid-state tunable ultraviolet laser materials. Journal of Modern Optics, 1998, 45(2): 221.
|
[14] |
YAMAGA M, IMAI T, MIYAIRI H, et al. Substitutional disorder and optical spectroscopy of Ce3+-doped CaNaYF6 crystals. Journal of Physics: Condensed Matter, 2001, 13: 753.
DOI
URL
|
[15] |
LIU Z L, SHIMAMURA K, NAKONO K, et al. Direct generation of 27-mJ, 309-nm pulses from a Ce3+:LiLuF4 oscillator using a large-size Ce3+: LiLuF4 crystal. Japanese Journal of Applied Physics, 2000, 39: 88.
|
[16] |
SRIVASTAVA A M, SETLUR A A, COMANZO H A, et al. Optical spectroscopy and thermal quenching of the Ce3+ luminescence in yttrium oxysulfate Y2O2[SO4]. Optical Materials, 2008, 30(10): 1499.
DOI
URL
|
[17] |
MORI M, NAKAUCHI D, OKADA G, et al. Scintillation and optical properties of Ce3+-doped CaGdAl3O7 single crystals. Journal of Luminescence, 2017, 186: 93.
DOI
URL
|
[18] |
WU Y T, REN G H. Crystal growth, structure, optical and scintillation properties of Ce3+-doped Tb2.2Lu0.8Al5O12 single crystals. CrystEngComm, 2013, 20: 4153.
|
[19] |
ZHANG X L, LI Y, JING F L, et al. Studies on the crystal growth and characterization of large size Sr:LCB single crystals. Crystals, 2022, 12(4): 442.
DOI
URL
|
[20] |
ZHANG J X, WANG L R, WU Y, et al. High-efficiency third harmonic generation at 355 nm based on La2CaB10O19. Optics Express, 2011, 19(18): 16722.
DOI
URL
|
[21] |
REISFELD R, HORMODALY J, BARNETT B. Ce3+ as a probe of the crystal field and the nature of the impuruty-ligand bond in borate and phosphate glasses. Chemical Physics Letters, 1972, 17(2): 248.
DOI
URL
|
[22] |
REISFELD R, JRGENSEN J K. Laser and Excited State of Rare Earths. New York: Springer, 1977.
|
[23] |
ZHANG P X, WAN Y B, YIN J G, et al. Spectroscopic, thermal and laser characteristics of Nd:LiLuF4 for 1314 nm laser. Laser Physics Letters, 2014, 11(11): 115803.
DOI
URL
|