无机材料学报 ›› 2023, Vol. 38 ›› Issue (7): 800-806.DOI: 10.15541/jim20220736 CSTR: 32189.14.10.15541/jim20220736
所属专题: 【能源环境】热电材料(202409)
肖娅妮1(), 吕嘉南1,2, 李振明3, 刘铭扬3, 刘伟3, 任志刚4, 刘弘景4, 杨东旺1(
), 鄢永高1(
)
收稿日期:
2022-12-05
修回日期:
2023-02-23
出版日期:
2023-03-15
网络出版日期:
2023-03-15
通讯作者:
杨东旺, 助理研究员. E-mail: ydongwang@whut.edu.cn;作者简介:
肖娅妮(1999-), 女, 硕士研究生. E-mail: 303587@whut.edu.cn
基金资助:
XIAO Yani1(), LYU Jianan1,2, LI Zhenming3, LIU Mingyang3, LIU Wei3, REN Zhigang4, LIU Hongjing4, YANG Dongwang1(
), YAN Yonggao1(
)
Received:
2022-12-05
Revised:
2023-02-23
Published:
2023-03-15
Online:
2023-03-15
Contact:
YANG Dongwang, research assistant. E-mail: ydongwang@whut.edu.cn;About author:
XIAO Yani (1999-), female, Master candidate. E-mail: 303587@whut.edu.cn
Supported by:
摘要:
Bi2Te3基化合物是目前得到广泛商业应用的热电材料, 其湿热稳定性直接影响着热电器件的服役可靠性。本工作探究了商用n型Bi2Se0.21Te2.79和p型Bi0.4Sb1.6Te3热电材料存储于85 ℃, 85% RH(相对湿度)湿热环境600 h期间的降解行为。在湿热处理600 h后, n型Bi2Se0.21Te2.79和p型Bi0.4Sb1.6Te3材料表面均被氧化, 反应过程分别为Bi2Te3+O2→Bi2O3+TeO2和Bi2Te3+Sb2Te3+O2→Bi2O3+Sb2O3+TeO2。氧化过程在材料内部产生了纳米级孔洞, 甚至微裂纹, 导致材料的电、热性能全面劣化。在室温时, n型Bi2Se0.21Te2.79材料的电导率从存储前的9.45×104 S·m-1显著下降到7.79×104 S·m-1, ZT则从0.97下降至0.79; p型Bi0.4Sb1.6Te3材料的Seebeck系数从243 μV·K-1明显减小至220 μV·K-1, ZT则从1.24降低到0.97。综上所述, Bi2Te3基热电材料的湿热稳定性极差, 微型热电器件在服役过程中需要进行严格封装, 以阻止热电材料自身与环境中的水汽、空气发生复杂的氧化还原反应。
中图分类号:
肖娅妮, 吕嘉南, 李振明, 刘铭扬, 刘伟, 任志刚, 刘弘景, 杨东旺, 鄢永高. Bi2Te3基热电材料的湿热稳定性研究[J]. 无机材料学报, 2023, 38(7): 800-806.
XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials[J]. Journal of Inorganic Materials, 2023, 38(7): 800-806.
Parameter at room temperature | n-type Bi2Se0.21Te2.79 | p-type Bi0.4Sb1.6Te3 | |||
---|---|---|---|---|---|
0 h | 600 h | 0 h | 600 h | ||
σ / (×104, S·m-1) | 9.45 | 7.79 | 9.12 | 8.69 | |
S / (μV·K-1) | 219 | 224 | 243 | 220 | |
n / (×1019, cm-3) | 1.25 | 1.32 | 1.52 | 1.47 | |
μ / (cm2·V-1·s-1) | 470 | 369 | 375 | 370 | |
PF / (mW·m-1·K-2) | 4.54 | 3.90 | 5.41 | 4.21 | |
κ / (W·m-1·K-1) | 1.40 | 1.48 | 1.31 | 1.29 | |
ZT | 0.97 | 0.79 | 1.24 | 0.97 |
表1 n型Bi2Se0.21Te2.79和p型Bi0.4Sb1.6Te3材料在湿热环境(85 ℃, 85% RH)存储600 h前后的室温热电性能
Table 1 Room temperature thermoelectric performance of n-type Bi2Se0.21Te2.79 and p-type Bi0.4Sb1.6Te3 materials before and after storage in hygrothermal environment (85 ℃, 85% RH) for 600 h
Parameter at room temperature | n-type Bi2Se0.21Te2.79 | p-type Bi0.4Sb1.6Te3 | |||
---|---|---|---|---|---|
0 h | 600 h | 0 h | 600 h | ||
σ / (×104, S·m-1) | 9.45 | 7.79 | 9.12 | 8.69 | |
S / (μV·K-1) | 219 | 224 | 243 | 220 | |
n / (×1019, cm-3) | 1.25 | 1.32 | 1.52 | 1.47 | |
μ / (cm2·V-1·s-1) | 470 | 369 | 375 | 370 | |
PF / (mW·m-1·K-2) | 4.54 | 3.90 | 5.41 | 4.21 | |
κ / (W·m-1·K-1) | 1.40 | 1.48 | 1.31 | 1.29 | |
ZT | 0.97 | 0.79 | 1.24 | 0.97 |
图1 (a1, b1)在湿热环境存储不同时间后材料的XRD谱图及(a2, b2)存储600 h后材料的表面EDS能谱
Fig. 1 (a1, b1) XRD patterns of samples after storage in hygrothermal environment for different time with (a2, b2) EDS results of material surface after storage in hygrothermal environment for 600 h (a1, a2) n-type Bi2Se0.21Te2.79; (b1, b2) p-type Bi0.4Sb1.6Te3
图2 n型Bi2Se0.21Te2.79材料在湿热环境存储600 h(a1~b1)前(a2~b2)后的表面XPS谱图
Fig. 2 Surface XPS spectra of n-type Bi2Se0.21Te2.79 material (a1-b1) before and (a2-b2) after storage in hygrothermal environment for 600 h (a1, a2) Bi4f; (b1, b2) Te3d
图3 p型Bi0.4Sb1.6Te3材料在湿热环境存储600 h(a1~c1)前(a2~c2)后的表面XPS谱图
Fig. 3 Surface XPS spectra of p-type Bi0.4Sb1.6Te3 material (a1-c1) before and (a2-c2) after storage in hygrothermal environment for 600 h (a1, a2) Bi4f; (b1, b2) Te3d; (c1, c2) Sb3d
图4 (a1, a2) n型Bi2Se0.21Te2.79和(b1, b2) p型Bi0.4Sb1.6Te3材料在湿热环境存储600 h(a1, b1)前(a2, b2)后的FESEM照片
Fig. 4 FESEM images of (a1, a2) n-type Bi2Se0.21Te2.79 and (b1, b2) p-type Bi0.4Sb1.6Te3 material (a1, b1) before and (a2, b2) after storage in hygrothermal environment for 600 h
图5 (a) 湿热环境存储600 h的n型Bi2Se0.21Te2.79材料靠近表面区域的TEM照片; (b) 图(a)中方框区域的元素面分布图谱; (c) 图(a)中方框区域的HRTEM照片; (d) 图(c)的IFFT图;湿热环境存储600 h的p型Bi0.4Sb1.6Te3材料靠近表面的(e) HAADF-STEM照片和(f)元素面分布图谱
Fig. 5 (a) TEM image of the area close to the surface of n-type Bi2Se0.21Te2.79 material exposed to hygrothermal environment for 600 h; (b) elemental surface distribution profiles of the square region in (a); (c) HRTEM image of the square region in (a); (d) IFFT image of (c); (e) HAADF-STEM image of the area close to the surface of p-type Bi0.4Sb1.6Te3 material exposed to hygrothermal environment and (f) its elemental surface distribution profiles of the region (b1, f1) O; (b2, f2) Bi; (b3, f3) Te; (b4)Se; (f4) Sb
图S1 湿热环境(85 ℃, 85% RH)条件下n型Bi2Se0.21Te2.79的热电性能
Fig. S1 Thermoelectric performance of n-type Bi2Se0.21Te2.79 in hygrothermal environment (85 ℃, 85% RH) (a) Electrical conductivity; (b) Seebeck coefficient; (c) Room temperature carrier concentration and carrier mobility; (d) Power factor; (e) Thermal conductivity; (f) ZT
图S2 湿热环境(85 ℃, 85% RH)条件下p型Bi0.4Sb1.6Te3的热电性能
Fig. S2 Thermoelectric performance of p-type Bi0.4Sb1.6Te3 in hygrothermal environment (85 ℃, 85% RH) (a) Electrical conductivity; (b) Seebeck coefficient; (c) Room temperature carrier concentration and carrier mobility; (d) Power factor; (e) Thermal conductivity; (f) ZT
图S3 n型Bi2Se0.21Te2.79和p型Bi0.4Sb1.6Te3材料在湿热环境存储不同时间的FESEM照片
Fig. S3 FESEM images of samples exposed to hygrothermal environment for different time n-type Bi2Se0.21Te2.79: (a1) 200 h; (a2) 400 h; p-type Bi0.4Sb1.6Te3: (b1) 200 h; (b2) 400 h
[1] |
CORNETT J, CHEN B, HAIDAR S, et al. Fabrication and characterization of Bi2Te3-based chip-scale thermoelectric energy harvesting devices. Journal of Electronic Materials, 2016, 46(5):2844.
DOI URL |
[2] |
LIU C, ZHAO K, FAN Y, et al. A flexible thermoelectric film based on Bi2Te3 for wearable applications. Functional Materials Letters, 2021, 15(1):2251005.
DOI URL |
[3] | NOZARIASBMARZ A, DYCUS J H, CABRAL M J, et al. Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials. Applied Energy, 2021, 283: 116211. |
[4] | HOU C C, VAN TOAN N, ONO T. High density micro-thermoelectric generator based on electrodeposition of Bi2Te3 and Sb2Te3. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, 2022: 600-603. |
[5] |
YAN Q, KANATZIDIS M G. High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21(5):503.
DOI |
[6] | YUAN X, L Z, SHAO Y, et al. Bi2Te3-based wearable thermoelectric generator with high power density: from structure design to application. Journal of Materials Chemistry C, 2022, 10: 6456. |
[7] |
FRANCIOSO L, DE PASCALI C, FARELLA I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. Journal of Power Sources, 2011, 196(6):3239.
DOI URL |
[8] | LU Z, ZHANG H, MAO C, et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Applied Energy, 2016, 164: 57. |
[9] | WANG Y, SHI Y, MEI D, et al. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Applied Energy, 2018, 215: 690. |
[10] |
ZOU Q, SHANG H, HUANG D, et al. Bi2Te3-based flexible thermoelectric generator for wearable electronics. Applied Physics Letters, 2022, 120(2):023903.
DOI URL |
[11] | YOU H, LI Z, SHAO Y, et al. Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density. Applied Thermal Engineering 2022, 202: 117818. |
[12] |
XU Z, YANG D, YUAN X, et al. Objective evaluation of wearable thermoelectric generator: from platform building to performance verification. Review of Scientific Instruments, 2022, 93(4):045105.
DOI URL |
[13] |
HENDRICKS T J, KARRI N K. Micro- and nano-technology: a critical design key in advanced thermoelectric cooling systems. Journal of Electronic Materials, 2009, 38(7):1257.
DOI URL |
[14] |
TANG X, LI Z, LIU W, et al. A comprehensive review on Bi2Te3- based thin films: thermoelectrics and beyond. Interdisciplinary Materials, 2022, 1(1):88.
DOI URL |
[15] | MAMUR H, BHUIYAN M R A, KORKMAZ F, et al. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renewable and Sustainable Energy Reviews, 2018, 82: 4159. |
[16] | ZHU W, WEI P, ZHANG J, et al. Fabrication and excellent performances of bismuth telluride-based thermoelectric devices. ACS Applied Materials & Interfaces, 2022, 14(10):12276. |
[17] | LIN Y, WU X, LI Y, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique. Nano Energy, 2022, 102: 107736. |
[18] |
TASHIRO M, SUKENAGA S, IKEMOTO K, et al. Interfacial reactions between pure Cu, Ni, and Ni-Cu alloys and p-type Bi2Te3bulk thermoelectric material. Journal of Materials Science, 2021, 56(29):16545.
DOI |
[19] |
CHEN L, BAI S, SHI X, et al. High temperature interfacial stability of Fe/Bi0.5Sb1.5Te3thermoelectric elements. Journal of Inorganic Materials, 2021, 36(2):197.
DOI URL |
[20] |
ZHENG Y, TAN X Y, WAN X, et al. Thermal stability and mechanical response of Bi2Te3-based materials for thermoelectric applications. ACS Applied Energy Materials, 2019, 3(3): 2078.
DOI URL |
[21] | LIN C F, HAU N Y, HUANG Y T, et al. Synergetic effect of Bi2Te3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi2Te3 joints. Journal of Alloys and Compounds, 2017, 708: 220. |
[22] |
JIANG C, FAN X A, HU J, et al. Thermal stability of zone melting p-type (Bi, Sb)2Te3 ingots and comparison with the corresponding powder metallurgy samples. Journal of Electronic Materials, 2018, 47(7):4038.
DOI |
[23] | JIANG C, FAN X A, FENG B, et al. Thermal stability of p-type polycrystalline Bi2Te3-based bulks for the application on thermoelectric power generation. Journal of Alloys and Compounds, 2017, 692: 885. |
[24] |
HU X, FAN X A, JIANG C, et al. Thermal stability of n-type zone- melting Bi2(Te, Se)3 alloys for thermoelectric generation. Materials Research Express, 2018, 6(3):035907.
DOI URL |
[25] | TANG H, HUI B, YANG X, et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices. Journal of Alloys and Compounds, 2022, 896: 163090. |
[26] | ARUN P, TYAGI P, VEDESHWAR, et al. Ageing effect of Sb2Te3 thin films ageing effect of Sb2Te3 thin films. Physica B: Condensed Matter, 2001, 307: 105. |
[27] | BANDO H, KOIZUMI K, OIKAWA Y, et al. The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy. Journal of Physics: Condensed Matter, 2000, 12: 5607. |
[28] | GUO J H, QIU F, ZHANG Y, et al. Surface oxidation properties in a topological insulator Bi2Te3 film. Chinese Physics Letters, 2013, 30: 106801. |
[29] | MUSIC D, CHANG K, SCHMIDT P, et al. On atomic mechanisms governing the oxidation of Bi2Te3. Journal of Physics: Condensed Matter, 2017, 29: 485705. |
[30] | SIROTINA A P, CALLAERT C, VOLYKHOV A A, et al. Mechanistic studies of gas reactions with multicomponent solids: what can we learn by combining NAP XPS and atomic resolution STEM/EDX? The Journal of Physical Chemistry C, 2019, 123: 26201. |
[31] | THOMAS C R, VALLON M K, FRITH M G, et al. Surface oxidation of Bi2(Te,Se)3 topological insulators depends on cleavage accuracy. Chemistry of Materials, 2016, 28: 35. |
[32] | QU Q, LIU B, LIANG J, et al. Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catalysis, 2020, 10: 1656. |
[33] | SHARMA P A, OHTA T, BRUMBACH M T, et al. Ex Situ photoelectron emission microscopy of polycrystalline bismuth and antimony telluride surfaces exposed to ambient oxidation. Applied Materials & Interfaces, 2021, 13: 18218. |
[34] | LU B, HU S, LI W E, et al. Preparation and characterization of Sb2Te3 thin films by coevaporation. International Journal of Photoenergy, 2010, 4: 476589. |
[35] |
NORIMASA O, KUROKAWA T, EGUCHI R, et al. Evaluation of thermoelectric performance of Bi2Te3 films as a function of temperature increase rate during heat treatment. Coatings, 2021, 11(1):38.
DOI URL |
[36] | LI A, NAN P, WANG Y, et al. Chemical stability and degradation mechanism of Mg3Sb2-Bi thermoelectrics towards room-temperature applications. Acta Materialia, 2022, 239: 118301. |
[37] | ZHAO Y, BURDA C. Chemical synthesis of Bi(0.5)Sb(1.5)Te3 nanocrystals and their surface oxidation properties. ACS Applied Materials & Interfaces, 2009, 1(6):1259. |
[38] | JEONG K, PARK D, MAENG I, et al. Modulation of optoelectronic properties of the Bi2Te3nanowire by controlling the formation of selective surface oxidation. Applied Surface Science, 2021, 548: 149069. |
[1] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. |
[2] | 陈浩, 樊文浩, 安德成, 陈少平. 能带优化和载流子调控改善SnTe的热电性能[J]. 无机材料学报, 2024, 39(3): 306-312. |
[3] | 张哲, 孙婷婷, 王连军, 江莞. 不同维度Ag2Se构筑柔性热电薄膜的性能优化与器件集成研究[J]. 无机材料学报, 2024, 39(11): 1221-1227. |
[4] | 孟雨婷, 王雪梅, 章淑娴, 陈志炜, 裴艳中. Bi2Te3基热电材料的单带和双带传输特性转变[J]. 无机材料学报, 2024, 39(11): 1283-1291. |
[5] | 苏浩健, 周敏, 李来风. 多元素掺杂优化SnTe的热电性能[J]. 无机材料学报, 2024, 39(10): 1159-1166. |
[6] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[7] | 华思恒, 杨东旺, 唐昊, 袁雄, 展若雨, 徐卓明, 吕嘉南, 肖娅妮, 鄢永高, 唐新峰. n型Bi2Te3基材料表面处理对热电单元性能的影响[J]. 无机材料学报, 2023, 38(2): 163-169. |
[8] | 李建波, 田震, 蒋全伟, 于砺锋, 康慧君, 曹志强, 王同敏. 不同元素掺杂对CaTiO3微观结构及热电性能的影响[J]. 无机材料学报, 2023, 38(12): 1396-1404. |
[9] | 王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723. |
[10] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[11] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[12] | 金敏, 白旭东, 张如林, 周丽娜, 李荣斌. 区熔法制备金属硫化物Ag2S及其热电性能研究[J]. 无机材料学报, 2022, 37(1): 101-106. |
[13] | 张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942. |
[14] | 杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354. |
[15] | 蔡剑锋, 王泓翔, 刘国强, 蒋俊. 热电材料中的高熵结构设计[J]. 无机材料学报, 2021, 36(4): 399-404. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||