无机材料学报 ›› 2022, Vol. 37 ›› Issue (12): 1344-1350.DOI: 10.15541/jim20220224
王晶1(), 徐守冬1(), 卢中华1, 赵壮壮1, 陈良2, 张鼎2, 郭春丽3
收稿日期:
2022-04-16
修回日期:
2022-05-26
出版日期:
2022-12-20
网络出版日期:
2022-06-16
通讯作者:
徐守冬, 副教授. E-mail: xushoudong@tyut.edu.cn作者简介:
王 晶(1994-), 女, 硕士研究生. E-mail: 513570705@qq.com
基金资助:
WANG Jing1(), XU Shoudong1(), LU Zhonghua1, ZHAO Zhuangzhuang1, CHEN Liang2, ZHANG Ding2, GUO Chunli3
Received:
2022-04-16
Revised:
2022-05-26
Published:
2022-12-20
Online:
2022-06-16
Contact:
XU Shoudong, associate professor. E-mail: xushoudong@tyut.edu.cnAbout author:
WANG Jing (1994-), female, Master candidate. E-mail: 513570705@qq.com
Supported by:
摘要:
过渡金属硒化物具有较高的理论比容量和良好的导电能力, 是钠离子电池潜在的负极材料, 但其在电化学过程中会发生较大体积变化, 循环寿命不佳, 发展受到了限制。为缓解上述问题, 本研究以金属有机框架材料ZIF-67为前驱体, 用单宁酸(Tannic acid, TA)将ZIF-67刻蚀为空心结构, 再通过碳化、硒化制备出以碳为骨架的纳米中空CoSe2材料(H-CoSe2/C), 相较于未经刻蚀处理的CoSe2材料(CoSe2/C), H-CoSe2/C表现出更好的储钠性能, 特别是循环稳定性得到显著提高。50 mA·g-1电流密度下, 经过350次循环, 可逆比容量保持在383.4 mAh·g-1, 容量保持率为83.6%; 在500 mA·g-1电流密度下, 经过350次循环后容量保持率仍能达到72.2%。本研究表明, 中空结构能够提供足够的空间以缓解材料在电化学过程中的体积变化, 进而提高电极材料的循环性能。
中图分类号:
王晶, 徐守冬, 卢中华, 赵壮壮, 陈良, 张鼎, 郭春丽. 钠离子电池中空结构CoSe2/C负极材料的制备及储钠性能研究[J]. 无机材料学报, 2022, 37(12): 1344-1350.
WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350.
图2 H-CoSe2/C的(a) SEM、(b) TEM、(c) HRTEM照片及(d) Co、Se和C的EDS元素分布图
Fig. 2 (a) SEM, (b) TEM, (c) HRTEM images and (d) EDS elemental mappings of Co, Se, and C of H-CoSe2/C
图3 (a) ZIF-67, TA-Co和H-Co/C, (b) H-CoSe2/C和CoSe2/C的XRD图谱; (c) H-CoSe2/C和CoSe2/C的拉曼光谱图; H-CoSe2/C的(d) C1s、(e) Co2p和(f) Se3d XPS分谱图
Fig. 3 XRD patterns of (a) ZIF-67, TA-Co and H-Co/C, (b) H-CoSe2/C and CoSe2/C, (c) Raman spectra of H-CoSe2/C and CoSe2/C, (d) C1s, (e) Co2p, and (f) Se3d XPS spectra of H-CoSe2/C
图4 (a) H-CoSe2/C在0.1 mV·s-1扫速下的CV曲线, 以及(b) H-CoSe2/C和CoSe2/C的循环性能(50 mA·g-1)
Fig. 4 (a) CV curves of H-CoSe2/C at scan rate of 0.1 mV·s-1, and (b) cycle performance of H-CoSe2/C and CoSe2/C (50 mA·g-1)
图5 (a, c) H-CoSe2/C和(b, d) CoSe2/C电极(a, b)循环1周和(c, d) 350周后的SEM照片
Fig. 5 SEM images of (a, c) H-CoSe2/C and (b, d) CoSe2/C after (a, b) 1 and (c, d) 350 cycles
图6 H-CoSe2/C电极(a)在不同扫描速率下的CV曲线, (b)氧化还原峰的lgi与lgv的关系(i: 峰值电流, v: 扫描速率), (c)在不同扫描率下赝电容贡献百分比的柱状图, (d)在扫描速率1.5 V·s-1下的电容贡献率
Fig. 6 (a) CV curves at different scan rates, (b) corresponding lgi versus lgv plots at each redox peak (i: peak current, v: scan rate), (c) histogram of pseudo capacitive contribution at different scan rates, and (d) capacitive contribution at scan rate of 1.5 V·s-1 of H-CoSe2/C electrode Colorful figures are available on website
图7 Na0.44MnO2/H-CoSe2/C全电池的(a)工作原理示意图, (b)充放电曲线和(c)在500 mA·g-1下的循环性能
Fig. 7 (a) Schematic diagram of the working mechanism, (b) charge-discharge curves and (c) cycle performance at 500 mA·g-1 of Na0.44MnO2/H-CoSe2/C full cell Colorful figures are available on website
图S4 (a) H-CoSe2/C电极在50 mA·g-1下的充放电曲线; (b) H-CoSe2/C和CoSe2/C电极的倍率性能; (c) H-CoSe2/C和CoSe2/C电极在500 mA·g-1下的循环性能
Fig. S4 (a) Charge-discharge curves of H-CoSe2/C electrode at 50 mA·g-1; (b) Rate performances of H-CoSe2/C and CoSe2/C; (c) Cycle performance of H-CoSe2/C and CoSe2/C at 500 mA·g-1
图S5 H-CoSe2/C和CoSe2/C在(a) 循环1周、(b) 120周和 (c) 350周后的EIS图谱和(d) R2柱状图, 插图为等效电路
Fig. S5 EIS spectra of H-CoSe2/C and CoSe2/C after (a) 1 cycle, (b) 120 cycles, and (c) 350 cycles and (d) corresponding histogram of R2 with inset showing equivalent circuit model
[1] |
USISKIN R, LU Y X, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries. Nature Reviews Materials, 2021, 6: 1020-1035.
DOI URL |
[2] |
PERVEEN T, SIDDIQ M, SHAHZAD N, et al. Prospects in anode materials for sodium ion batteries-a review. Renewable and Sustainable Energy Reviews, 2020, 119: 109549.
DOI URL |
[3] |
FANG L, BAHLAWANE N, SUN W, et al. Conversion-alloying anode materials for sodium ion batteries. Small, 2021, 17(37): 2101137.
DOI URL |
[4] |
HU Z, LIU Q N, CHOU S L, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium- ion batteries. Advanced Materials, 2017, 29(48): 1700606.
DOI URL |
[5] |
LUO M H, YU H X, HU F Y, et al. Metal selenides for high performance sodium ion batteries. Chemical Engineering Journal, 2020, 380: 122557.
DOI URL |
[6] |
WU C, DOU S X, YU Y, et al. The state and challenges of anode materials based on conversion reactions for sodium storage. Small, 2018, 14(22): 1703671.
DOI URL |
[7] |
ZHANG K, PARK M H, ZHOU L M, et al. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Advanced Functional Materials, 2016, 26(37): 6728-6735.
DOI URL |
[8] |
MA X Q, ZOU L, ZHAO W X, et al. Tailoring hollow microflower-shaped CoSe2anodes in sodium ion batteries with high cycling stability. Chemical Communications, 2018, 54: 10507-10510.
DOI URL |
[9] |
FANG Y J, YU X Y, LOU X W, et al. Formation of hierarchical Cu-doped CoSe2 microboxes via sequential ion exchange for high- performance sodium-ion batteries. Advanced Materials, 2018, 30(21): 1706668.
DOI URL |
[10] |
WANG B, MIAO X W, DONG H L, et al. In situ construction of active interfaces towards improved high-rate performance of CoSe2. Journal of Materials Chemistry A, 2021, 9(25): 14582-14592.
DOI URL |
[11] |
XU X, YANG T, ZHANG Q, et al. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen- doped carbon tubes. Chemical Engineering Journal, 2020, 390: 124493.
DOI URL |
[12] |
FU Y, WEI Q, ZHANG G, et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Advanced Energy Materials, 2018, 8(26): 1801445.
DOI URL |
[13] |
YANG J, GAO H C, MEN S, et al. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li-and Na-ion batteries. Advanced Science, 2018, 5(12): 1800763.
DOI URL |
[14] |
XU X, LIU J, LIU J, et al. A general MOF-derived selenidation strategy for in-situ carbon-encapsulated metal selenides as high- rate anodes for Na-ion batteries. Advanced Functional Materials, 2018, 28(16): 1707573.
DOI URL |
[15] |
HU H, ZHANG J T, GUAN B Y, et al. Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angewandte Chemie International Edition, 2016, 55(33): 9514-9518.
DOI URL |
[16] |
TABASSUM H, ZOU R, MAHMOOD A, et al. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium- ion battery anodes. Advanced Materials, 2018, 30(8): 1705441.
DOI URL |
[17] | LIU T Z, LI Y P, HOU S, et al. Building hierarchical microcubes composed of one-dimensional CoSe2 @nitrogen-doped carbon for superior sodium ion batteries. Chemistry, 2020, 26(60): 13716-13724. |
[18] | ZHANG Y F, PAN A Q, DING L, et al. Nitrogen-doped yolk-shell structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Applied Materials & Interfaces, 2017, 9(4): 3624-3633. |
[19] |
HUANG Y, FANG Y J, LU X F, et al. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angewandte Chemie International Edition, 2020, 59(45): 19914-19918.
DOI URL |
[20] | PAN Y L, CHENG X D, GAO M Y, et al. Cagelike CoSe2@N- doped carbon aerogels with pseudocapacitive properties as advanced materials for sodium-ion batteries with excellent rate performance and cyclic stability. ACS Applied Materials & Interfaces, 2020, 12(30): 33621-33630. |
[21] |
TANG Y, ZHAO Z, HAO X, et al. Engineering hollow polyhedrons structured from carbon-coated CoSe2 nanospheres bridged by CNTs with boosted sodium storage performance. Journal of Materials Chemistry A, 2017, 5(26): 13591-13600.
DOI URL |
[22] |
TABASSUM H, ZHI C, HUSSAIN T, et al. Encapsulating trogtalite CoSe2 nanobuds into BCN nanotubes as high storage capacity sodium ion battery anodes. Advanced Energy Materials, 2019, 9(39): 1901778.
DOI URL |
[23] |
XU S D, ZHUANG Q C, TIAN L L, et al. Impedance spectra of nonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries: experimental and theoretical studies. The Journal of Physical Chemistry C, 2011, 115(18): 9210-9219.
DOI URL |
[24] |
SUN X P, ZENG S Y, MAN R X, et al. Yolk-shell structured CoSe2/C nanospheres as multifunctional anode materials for both full/half sodium-ion and full/half potassium-ion batteries. Nanoscale, 2021, 13(23): 10385-10392.
DOI URL |
[25] |
AGARWAL R R. Phase changes and diffusivity in the carbon- lithium electrode. Journal of Power Sources, 1989, 25(2): 151-158.
DOI URL |
[26] |
ZHAO Z Z, HUANG X B, SHAO Y F, et al. Surface modification of Na0.44MnO2 via a nonaqueous solution-assisted coating for ultra- stable and high-rate sodium-ion batteries. Chemical Engineering Journal Advances, 2022, 10: 100292.
DOI URL |
[1] | 孔国强, 冷明哲, 周战荣, 夏池, 沈晓芳. Sb掺杂O3型Na0.9Ni0.5Mn0.3Ti0.2O2钠离子电池正极材料[J]. 无机材料学报, 2023, 38(6): 656-662. |
[2] | 张笑宇, 刘永盛, 李然, 李耀刚, 张青红, 侯成义, 李克睿, 王宏志. 基于Cu3(HHTP)2薄膜的离子液体电致变色电极[J]. 无机材料学报, 2022, 37(8): 883-890. |
[3] | 洪佳辉, 马冉, 仵云超, 文涛, 艾玥洁. MOFs自牺牲模板法制备CoNx/g-C3N4纳米材料用作高效光催化还原U(VI)[J]. 无机材料学报, 2022, 37(7): 741-749. |
[4] | 王禹桐, 张非凡, 许乃才, 王春霞, 崔立山, 黄国勇. 水系锂离子电池负极材料LiTi2(PO4)3的研究进展[J]. 无机材料学报, 2022, 37(5): 481-492. |
[5] | 赵伟, 徐阳, 万颖杰, 蔡天逊, 穆金潇, 黄富强. 金属氰胺化合物的结构、合成及电化学储能应用[J]. 无机材料学报, 2022, 37(2): 140-151. |
[6] | 李昆儒, 胡省辉, 张正富, 郭玉忠, 黄瑞安. 源于溪木贼的高性能锂离子电池三维多孔生物质硅/碳复合负极材料[J]. 无机材料学报, 2021, 36(9): 929-935. |
[7] | 张晓君, 李佳乐, 邱吴劼, 杨淼森, 刘建军. 钠离子电池正极材料P2-Nax[Mg0.33Mn0.67]O2的电化学活性研究[J]. 无机材料学报, 2021, 36(6): 623-628. |
[8] | 曾凡鑫, 刘创, 曹余良. 去合金化制备具有高循环稳定性的纳米多孔Sb/MCNT储钠负极材料[J]. 无机材料学报, 2021, 36(11): 1137-1144. |
[9] | 湛菁,徐昌藩,龙怡宇,李启厚. 聚丙烯酰胺凝胶法制备Bi2Mn4O10及其电化学性能[J]. 无机材料学报, 2020, 35(7): 827-833. |
[10] | 朱泽阳,魏济时,黄健航,董向阳,张鹏,熊焕明. 晶格空位ZnO纳米棒的制备及其在镍锌电池中的应用[J]. 无机材料学报, 2020, 35(4): 423-430. |
[11] | 李国东, 姬国勋, 孙新利, 杜伟, 刘伟, 王殳凹. 层状金属有机框架材料用于水溶液中137Cs的高效去除[J]. 无机材料学报, 2020, 35(3): 367-372. |
[12] | 郑时有, 董飞, 庞越鹏, 韩盼, 杨俊和. 纳米金属氧化物基锂离子电池负极材料研究进展[J]. 无机材料学报, 2020, 35(12): 1295-1306. |
[13] | 郭丝霖, 康帅, 陆文强. 一步法制备锗/MXene复合材料及其作为锂离子电池负极的研究[J]. 无机材料学报, 2020, 35(1): 105-111. |
[14] | 谭毅, 王凯. 高比能量锂离子电池硅基负极材料研究进展[J]. 无机材料学报, 2019, 34(4): 349-357. |
[15] | 冯晓晶, 王恭凯, 王晓然, 何珺, 王新, 彭会芬. Cr 3+掺杂LiSn2(PO4)3负极材料的电化学性能研究[J]. 无机材料学报, 2019, 34(4): 358-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||