无机材料学报 ›› 2022, Vol. 37 ›› Issue (1): 79-85.DOI: 10.15541/jim20210212 CSTR: 32189.14.10.15541/jim20210212
收稿日期:2021-03-29
									
				
											修回日期:2021-04-20
									
				
									
				
											出版日期:2022-01-20
									
				
											网络出版日期:2021-07-20
									
			通讯作者:
					张媛媛, 副教授. E-mail: yyzhang@ee.ecnu.edu.cn
							作者简介:李 胜(1996-), 男, 硕士研究生. E-mail: 51181213007@stu.ecnu.edu.cn
				
							基金资助:
        
               		LI Sheng(
), SONG Guoqiang, ZHANG Yuanyuan(
), TANG Xiaodong
			  
			
			
			
                
        
    
Received:2021-03-29
									
				
											Revised:2021-04-20
									
				
									
				
											Published:2022-01-20
									
				
											Online:2021-07-20
									
			Contact:
					ZHANG Yuanyuan, associate professor. E-mail: yyzhang@ee.ecnu.edu.cn    
							About author:LI Sheng (1996-), male, Master candidate. E-mail: 51181213007@stu.ecnu.edu.cn				
							Supported by:摘要:
多铁材料在新型器件领域的应用非常广泛, 其研究已成为当今材料研究领域的热点之一。钛酸钡(BaTiO3, BTO)在室温下具有较强的铁电性、高介电常数和电光特性等丰富的物理性能, 吸引了科研人员对其进行多铁化的研究。本工作通过固相烧结法制备BTO和BaTi0.94(TM1/2Nb1/2)0.06O3(TM = Mn/Ni/Co)陶瓷, 系统研究了B位共掺杂对陶瓷的生长特性与电学、磁学和光学方面的影响。实验结果表明: 掺杂有效抑制了六方相的产生, 样品晶体结构由四方相向立方相转变, 不同元素离子半径的差异使得相变的程度有所不同。通过拉曼散射发现BTO基陶瓷四方相的特征峰变弱, 进一步证明了共掺杂导致四方相减少。介电温谱表明BaTi0.94(TM1/2Nb1/2)0.06O3的居里温度(TC)也较BTO有大幅度降低, 同时样品的铁电性虽然也明显削弱, 但是还保持有较好的铁电性, 这些都和晶体结构的相变程度密切相关。磁性测试结果表明: 在三组共掺组分中, Ni-Nb共掺杂具有最好的室温铁磁性, 铁磁性的形成机制可以通过F中心交换(F-center exchange, FCE)理论来解释。与BTO相比, BaTi0.94(TM1/2Nb1/2)0.06O3的带隙明显减小, 这主要是因为掺杂产生杂质能级使带隙减小, 与能带理论吻合。上述结果表明: 通过B位共掺杂可以获得室温下铁电性与铁磁性共存的BTO基多铁陶瓷, 有望在多铁性功能器件中获得更广泛的应用。
中图分类号:
李胜, 宋国强, 张媛媛, 唐晓东. BTO基多铁陶瓷的制备及物理性能研究[J]. 无机材料学报, 2022, 37(1): 79-85.
LI Sheng, SONG Guoqiang, ZHANG Yuanyuan, TANG Xiaodong. Preparation and Physical Property of BTO-based Multiferroic Ceramics[J]. Journal of Inorganic Materials, 2022, 37(1): 79-85.
																													图3 在1 kHz~1 MHz频率范围BTO系列陶瓷的介电常数(a~d)和损耗与温度的关系(e)
Fig. 3 Temperature dependence of dielectric constant (a-d) and loss (e) of BTO series ceramics in the frequency range from 1 kHz to 1 MHz
| Sample | EC/(kV·cm-1) | Pr/(μC·cm-2) | Ps/(μC·cm-2) | 
|---|---|---|---|
| BTO | 4.3 | 13.24 | 28.7 | 
| BTMNO | 1.22 | 5.85 | 19.1 | 
| BTNNO | 0.67 | 0.55 | 15.5 | 
| BTCNO | 1.85 | 6.02 | 19.9 | 
表1 电滞回线中各物理参数
Table 1 Physical parameters in the electric hysteresis loop
| Sample | EC/(kV·cm-1) | Pr/(μC·cm-2) | Ps/(μC·cm-2) | 
|---|---|---|---|
| BTO | 4.3 | 13.24 | 28.7 | 
| BTMNO | 1.22 | 5.85 | 19.1 | 
| BTNNO | 0.67 | 0.55 | 15.5 | 
| BTCNO | 1.85 | 6.02 | 19.9 | 
																													图5 300 K下, BTO系列陶瓷磁化曲线(a-d)和去除顺磁部分后的磁化曲线(e)
Fig. 5 Isothermal magnetization of BTO series ceramics at 300 K (a-d) and isothermal magnetization loops after subtracting the paramagnetic contributions of samples (e) Colourful figures are available on website
| [1] |  
											  DONG S, LIU J M, CHEONG S W, et al. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Advances in Physics, 2015, 64(5/6):519-626. 
											 												 DOI URL  | 
										
| [2] |  
											  EERENSTEIN W, MATHUR N D, SCOTT J F. Multiferroic and magnetoelectric materials. Nature, 2006, 442(7104):759-765. 
											 												 DOI URL  | 
										
| [3] |  
											  KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426(6962):55-58. 
											 												 DOI URL  | 
										
| [4] |  
											  CORASANITI M, BARONE P, NUCARA A, et al. Electronic bands and optical conductivity of the Dzyaloshinsky-Moriya multiferroic Ba2CuGe2O7. Physical Review B, 2017, 96(8):085115. 
											 												 DOI URL  | 
										
| [5] | CHEN L, JIA Y, ZHAO J, et al. Strong piezoelectric-catalysis in barium titanate/carbon hybrid nanocomposites for dye wastewater decomposition. Journal of Colloid & Interface Science, 2021, 586:758-765. | 
| [6] |  
											  XU X, WU Z, XIAO L, et al. Strong pieo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis. Journal of Alloys and Compounds, 2018, 762:915-921. 
											 												 DOI URL  | 
										
| [7] |  
											  XIA Y, JIA Y, QIAN W, et al. Pyroelectrically induced pyro- electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals, 2017, 7(4):122. 
											 												 DOI URL  | 
										
| [8] |  
											  WANG K F, LIU J M, REN Z F. Multiferroicity: the coupling between magnetic and polarization orders. Advances in Physics, 2009, 58(4):321-448. 
											 												 DOI URL  | 
										
| [9] |  
											  BENEDEK N A, FENNIE C J. Why are there so few perovskite ferroelectrics? The Journal of Physical Chemistry C, 2013, 117(26):13339-13349. 
											 												 DOI URL  | 
										
| [10] |  
											  HILL N A. Why are there so few magnetic ferroelectrics? The Journal of Physical Chemistry B, 2000, 104(29):6694-6709. 
											 												 DOI URL  | 
										
| [11] |  
											  HIROYUKI N, KATAYAMA-YOSHIDA H. Theoretical prediction of magnetic properties of Ba(Ti1-xMx)O3 (M=Sc,V,Cr,Mn,Fe,Co, Ni,Cu). Japanese Journal of Applied Physics, 2001, 40(Part 2, 12B):L1355-L1358. 
											 												 DOI URL  | 
										
| [12] |  
											  SONG C, WANG C, LIU X, et al. Room temperature ferromagnetism in cobalt-doped LiNbO3 single crystalline films. Crystal Growth & Design, 2009, 9(2):1235-1239. 
											 												 DOI URL  | 
										
| [13] |  
											  REN Z, XU G, WEI X, et al. Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Applied Physics Letters, 2007, 91(6):063106. 
											 												 DOI URL  | 
										
| [14] |  
											  KUMAR M, YADAV K L. Observation of room temperature magnetoelectric coupling in a Ni substituted Pb1-xNixTiO3 system. Journal of Applied Physics, 2007, 102(7):076107. 
											 												 DOI URL  | 
										
| [15] |  
											  DANG N V, THE-LONG P, THANH T D, et al. Structural phase separation and optical and magnetic properties of BaTi1-xMnxO3 multiferroics. Journal of Applied Physics, 2012, 111(11):113913. 
											 												 DOI URL  | 
										
| [16] |  
											  ZHOU L, ZHANG Y, LI S, et al. Fe doping effect on the structural, ferroelectric and magnetic properties of polycrystalline BaTi1-xFexO3 ceramics. Journal of Materials Science: Materials in Electronics, 2020, 31(17):14487-14493. 
											 												 DOI URL  | 
										
| [17] |  
											  RUBAVATHI P E, VENKIDU L, BABU M V G, et al. Structure, morphology and magnetodielectric investigations of BaTi1-xFexO3-δ ceramics. Journal of Materials Science-Materials in Electronics, 2019, 30(6):5706-5717. 
											 												 DOI URL  | 
										
| [18] |  
											  RANI A, KOLTE J, VADLA S S, et al. Structural, electrical, magnetic and magnetoelectric properties of Fe doped BaTiO3 ceramics. Ceramics International, 2016, 42(7):8010-8016. 
											 												 DOI URL  | 
										
| [19] |  
											  GHEORGHIU F, CIOMAGA C E, SIMENAS M, et al. Preparation and functional characterization of magnetoelectric Ba(Ti1-xFex)O3-x/2 ceramics. Application for a miniaturized resonator antenna. Ceramics International, 2018, 44(17):20862-20870. 
											 												 DOI URL  | 
										
| [20] | PHAN T L, THANG P D, HO T A, et al. et al. Local geometric and electronic structures and origin of magnetism in Co-doped BaTiO3 multiferroics. Journal of Applied Physics, 2015, 117(17): 17D904. | 
| [21] |  
											  PHONG P T, HUY B T, LEE Y I, et al. Polymorphs and dielectric properties of BaTi1-xNixO3. Journal of Alloys and Compounds, 2014, 583:237-243. 
											 												 DOI URL  | 
										
| [22] |  
											  DAS S, GHARA S, MAHADEVAN P, et al. Designing a lower band gap bulk ferroelectric material with a sizable polarization at room temperature. ACS Energy Letters, 2018, 3(5):1176-1182. 
											 												 DOI URL  | 
										
| [23] |  
											  ZHENG D, DENG H, SI S, et al. Modified structural, optical, magnetic and ferroelectric properties in (1-x)BaTiO3- xBaCo0.5Nb0.5O3-δ ceramics. Ceramics International, 2020, 46(5):6073-6078. 
											 												 DOI URL  | 
										
| [24] |  
											  N V, DUNG N T, PHONG P T, et al. Effect of Fe3+ substitution on structural, optical and magnetic properties of barium titanate ceramics. Physica B: Condensed Matter, 2015, 457:103-107. 
											 												 DOI URL  | 
										
| [25] |  
											  ZHENG D, DENG H, PAN Y, et al. Modified multiferroic properties in narrow bandgap (1-x)BaTiO3-xBaNb1/3Cr2/3O3-δ ceramics. Ceramics International, 2020, 46(17):26823-26828. 
											 												 DOI URL  | 
										
| [26] |  
											  DAS S K, MISHRA R N, ROUL B K. Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Communications, 2014, 191:19-24. 
											 												 DOI URL  | 
										
| [27] |  
											  VENKATESWARAN U D, NAIK V M, NAIK R. High-pressure Raman studies of polycrystalline BaTiO3. Physical Review B, 1998, 58(21):14256-14260. 
											 												 DOI URL  | 
										
| [28] |  
											  ROBINS L H, KAISER D L, ROTTER L D, et al. Investigation of the structure of barium titanate thin films by Raman spectroscopy. Journal of Applied Physics, 1994, 76(11):7487-7498. 
											 												 DOI URL  | 
										
| [29] |  
											  POKORNÝ J, PASHA U M, BEN L, et al. Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. Journal of Applied Physics, 2011, 109(11):114110. 
											 												 DOI URL  | 
										
| [30] |  
											  ZAYTSEVA I V, PUGACHEV A M, OKOTRUB K A, et al. Residual mechanical stresses in pressure treated BaTiO3 powder. Ceramics International, 2019, 45(9):12455-12460. 
											 												 DOI URL  | 
										
| [31] |  
											  SHUAI Y, ZHOU S, BÜRGER D, et al. Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films. Journal of Applied Physics, 2011, 109(8):084105. 
											 												 DOI URL  | 
										
| [32] |  
											  COEY J M D, VENKATESAN M, FITZGERALD C B. Donor impurity band exchange in dilute ferromagnetic oxides. Nature Materials, 2005, 4(2):173-179. 
											 												 DOI URL  | 
										
| [33] |  
											  COEY J M D, DOUVALIS A P, FITZGERALD C B, et al. Ferromagnetism in Fe-doped SnO2 thin films. Applied Physics Letters, 2004, 84(8):1332-1334. 
											 												 DOI URL  | 
										
| [34] |  
											  MOSTARI M S, HAQUE M J, RAHMAN ANKUR S, et al. Effect of mono-dopants (Mg2+) and co-dopants (Mg2+, Zr4+) on the dielectric, ferroelectric and optical properties of BaTiO3 ceramics. Materials Research Express, 2020, 7(6):066302. 
											 												 DOI URL  | 
										
| [35] | WENG B, XIAO Z, MENG W, et al. Bandgap engineering of barium bismuth niobate double perovskite for photoelectronchemical water oxidation. Advanced Energy Materals, 2017, 7(9):1602260. | 
| [36] |  
											  YANG F, YANG L, AI C, et al. Tailoring bandgap of perovskite BaTiO3 by transition metals Co-doping for visible-light photoelectrical applications: a first-principles study. Nanomaterials, 2018, 8(7):455. 
											 												 DOI URL  | 
										
| [37] |  
											  YIN J, ZOU Z, YE J. A novel series of the new visible-light- driven photocatalysts MCo1/3Nb2/3O3 (M=Ca, Sr, and Ba) with special electronic structures. The Journal of Physical Chemistry B, 2003, 107(21):4936-4941. 
											 												 DOI URL  | 
										
| [1] | 江宗玉, 黄红花, 清江, 王红宁, 姚超, 陈若愚. 铝离子掺杂MIL-101(Cr)的制备及其VOCs吸附性能研究[J]. 无机材料学报, 2025, 40(7): 747-753. | 
| [2] | 柴润宇, 张镇, 王孟龙, 夏长荣. 直接组装法制备氧化铈基金属支撑固体氧化物燃料电池[J]. 无机材料学报, 2025, 40(7): 765-771. | 
| [3] | 吴琼, 沈炳林, 张茂华, 姚方周, 邢志鹏, 王轲. 铅基织构压电陶瓷研究进展[J]. 无机材料学报, 2025, 40(6): 563-574. | 
| [4] | 张碧辉, 刘小强, 陈湘明. Ruddlesden-Popper结构杂化非常规铁电体的研究进展[J]. 无机材料学报, 2025, 40(6): 587-608. | 
| [5] | 周阳阳, 张艳艳, 于子怡, 傅正钱, 许钫钫, 梁瑞虹, 周志勇. 通过Bi3+自掺杂增强CaBi4Ti4O15基陶瓷压电性能[J]. 无机材料学报, 2025, 40(6): 719-728. | 
| [6] | 陈莉波, 盛盈, 伍明, 宋季岭, 蹇建, 宋二红. Na和O元素共掺杂氮化碳高效光催化制氢[J]. 无机材料学报, 2025, 40(5): 552-562. | 
| [7] | 孙雨萱, 王政, 时雪, 史颖, 杜文通, 满振勇, 郑嘹赢, 李国荣. 缺陷偶极子热稳定性对Fe掺杂PZT陶瓷机电性能影响研究[J]. 无机材料学报, 2025, 40(5): 545-551. | 
| [8] | 安然, 林锶, 郭世刚, 张冲, 祝顺, 韩颖超. 铁掺杂纳米羟基磷灰石的制备及紫外吸收性能研究[J]. 无机材料学报, 2025, 40(5): 457-465. | 
| [9] | 渠吉发, 王旭, 张维轩, 张康喆, 熊永恒, 谭文轶. 掺杂改性NaYTiO4增强固体氧化物燃料电池阳极抗硫中毒性能[J]. 无机材料学报, 2025, 40(5): 489-496. | 
| [10] | 穆浩洁, 张源江, 喻彬, 付秀梅, 周世斌, 李晓东. ZrO2掺杂Y2O3-MgO纳米复相陶瓷的制备及性能研究[J]. 无机材料学报, 2025, 40(3): 281-289. | 
| [11] | 沈浩, 陈倩倩, 周渤翔, 唐晓东, 张媛媛. A位La/Sr共掺杂PbZrO3薄膜的制备及储能特性优化[J]. 无机材料学报, 2024, 39(9): 1022-1028. | 
| [12] | 程俊, 张家伟, 仇鹏飞, 陈立东, 史迅. P掺杂β-FeSi2材料的制备与热电输运性能[J]. 无机材料学报, 2024, 39(8): 895-902. | 
| [13] | 赵志翰, 郭鹏, 魏菁, 崔丽, 刘山泽, 张文龙, 陈仁德, 汪爱英. Ti-DLC薄膜压阻性能及载流子输运行为研究[J]. 无机材料学报, 2024, 39(8): 879-886. | 
| [14] | 李家琪, 李小松, 李煊赫, 朱晓兵, 朱爱民. 暖等离子体合成过渡金属掺杂氧化锰析氧电催化剂[J]. 无机材料学报, 2024, 39(7): 835-844. | 
| [15] | TAM YU Puy Mang, 徐愉, 高泉浩, 周海琼, 张振, 尹浩, 李真, 吕启涛, 陈振强, 马凤凯, 苏良碧. 掺铒CaF2、SrF2、PbF2晶体的光谱性能与团簇结构研究[J]. 无机材料学报, 2024, 39(3): 330-336. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||