[1] |
ZAGHIB K, SIMONEAU M, ARMAND M, et al. Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. Journal of Power Sources, 1999, 81-82:300-305.
DOI
URL
|
[2] |
CHOI S H, KWON T, COSKUN A, et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science, 2017, 357(6348):279-283.
DOI
URL
|
[3] |
ZHONG Z Y, OUYANG C, SHI S Q, et al. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries. ChemPhysChem, 2008, 9(14):2104-2108.
DOI
URL
|
[4] |
STENINA I A, SOBOLEV A N, YAROSLAVTSEV S, et al. Influence of iron doping on structure and electrochemical properties of Li4Ti5O12. Electrochimica Acta, 2016, 219:524-530.
DOI
URL
|
[5] |
BHATTI H S, ANJUM D H, ULLAH S, et al. Electrochemical characteristics and Li+ ion intercalation kinetics of dual-phase Li4Ti5O12/Li2TiO3 composite in the voltage range 0-3 V. The Journal of Physical Chemistry C, 2016, 120(18):9553-9561.
DOI
URL
|
[6] |
WANG Y, REN Y, DAI X Y, et al. Electrochemical performance of ZnO-coated Li4Ti5O12 composite electrodes for lithium-ion batteries with the voltage ranging from 3 to 0.01 V. Royal Society Open Science, 2018, 5(10):180762.
DOI
URL
|
[7] |
JIANG S, ZHAO B, CHEN Y, et al. Li4Ti5O12 electrodes operated under hurdle conditions and SiO2 incorporation effect. Journal of Power Sources, 2013, 238:356-365.
DOI
URL
|
[8] |
JUNG Y S, CAVANAGH A S, RILEY L A, et al. Ultrathin direct atomic layer deposition on composite electrodes for highly durable and safe Li-ion batteries. Advanced Materials, 2010, 22(19):2172-2176.
DOI
URL
|
[9] |
LI N W, YIN Y X, YANG C P, et al. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Advanced Materials, 2016, 28(9):1853-1858.
DOI
URL
|
[10] |
WANG Y, ZHOU A J, DAI X Y, et al. Solid-state synthesis of submicron-sized Li4Ti5O12/Li2TiO3 composites with rich grain boundaries for lithium ion batteries. Journal of Power Sources, 2014, 266:114-120.
DOI
URL
|
[11] |
LU X, ZHAO L, HE X Q, et al. Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Advanced Materials, 2012, 24(24):3233-3238.
DOI
URL
|
[12] |
TAN G Q, WU F, LI L, et al. Coralline glassy lithium phosphate- coated LiFePO4 cathodes with improved power capability for lithium ion batteries. Journal of Physical Chemistry C, 2013, 117(12):6013-6021.
DOI
URL
|
[13] |
LEE S W, KIM M S, JEONG J H, et al. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted Sol-Gel method: improved thermal stability and high-voltage performance. Journal of Power Sources, 2017, 360:206-214.
DOI
URL
|
[14] |
HIRAYAMA M, KIM K, TOUJIGAMORI T, et al. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Dalton Transactions, 2011, 40(12):2882-2887.
DOI
URL
|
[15] |
ZHAO L, HU Y S, LI H, et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Advanced Materials, 2011, 23(11):1385-1388.
DOI
URL
|
[16] |
HALL D S, GAUTHIER R, ELDESOKY A, et al. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells. ACS Applied Materials & Interfaces, 2019, 11(15):14095-14100.
|
[17] |
BORGHOLS W J H, WAGEMAKER M, LAFONT U, et al. Size effects in the Li4+xTi5O12 spinel. Journal of the American Chemical Society, 2009, 131(49):17786-17792.
DOI
URL
|
[18] |
GANAPATHY S, WAGEMAKER M J A N. Nanosize storage properties in spinel Li4Ti5O12 explained by anisotropic surface lithium insertion. ACS Nano, 2012, 6(10):8702-8712.
DOI
URL
|
[19] |
WAGEMAKER M, SIMON D R, KELDER E M, et al. A kinetic two-phase and equilibrium solid solution in spinel Li4+xTi5O12. Advanced Materials, 2010, 18(23):3169-3173.
DOI
URL
|
[20] |
JUNG Y S, LU P, CAVANAGH A S, et al. Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Advanced Energy Materials, 2013, 3(2):213-219.
DOI
URL
|
[21] |
MOGUSMILANKOVIC A, SANTIC A, KARABULUT M, et al. Study of electrical properties of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses by impedance spectroscopy. II. Journal of Non-Crystalline Solids, 2003, 330(1/2/3):128-141.
DOI
URL
|
[22] |
AHN D, XIAO X J E C. Extended lithium titanate cycling potential window with near zero capacity loss. Electrochemistry Communications, 2011, 13(8):796-799.
DOI
URL
|
[23] |
GE H, LI N, LI D Y, et al. Study on the theoretical capacity of spinel lithium titanate induced by low-potential intercalation. Journal of Physical Chemistry C, 2009, 113(16):6324-6326.
DOI
URL
|
[24] |
LEVI M D, SALITRA G, MARKOVSKY B, et al. Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. Journal of The Electrochemical Society, 1999, 146(4):1279-1289.
DOI
URL
|