| [1] | FU Q, RAHAMAN M N, FU H L, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I.preparation and in vitro degradation. Journal of Biomedical Materials Research Part A, 2010, 95A(1):165-171. | 
																													
																						| [2] | BAINO F, FIUME E. Mechanical characterization of 45S5 bioactive glass-derived scaffolds. Materials Letters, 2019, 245:14-17. DOI    
																																					URL
 | 
																													
																						| [3] | CHANG Y C, LIN Z Y, WANG D P, et al. An injectable composite bone cement based on mesoporous borosilicate bioactive glass sphere. Journal of Inorganic Materials, 2020, 35(12):1398-1406. DOI    
																																					URL
 | 
																													
																						| [4] | XIE X, PANG L B, YAO A H, et al. Nanocement produced from borosilicate bioactive glass nanoparticles composited with alginate. Australian Journal of Chemistry, 2019, 72:354-361. DOI    
																																					URL
 | 
																													
																						| [5] | BONIS D A, CURCIO M, FOSCA M, et al. RBP1 bioactive glass-ceramic films obtained by pulsed laser deposition. Materials Letters, 2016, 175:195-198. DOI    
																																					URL
 | 
																													
																						| [6] | GABRIEL F D G, LAETITIA K, YSIA I G, et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, 2018, 9:1-18. | 
																													
																						| [7] | FIUME E, BARBERI J, VERNÉ E, et al. Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. Journal of Functional Biomaterials, 2018, 9(24):1-33. DOI    
																																					URL
 | 
																													
																						| [8] | PEITL O, ZANOTO E D, HENCH L L. Highly bioactive P2O5-Na2O-CaO-SiO2 glass-ceramics. Non-Crystalline Solids, 2001, 292:115-126. DOI    
																																					URL
 | 
																													
																						| [9] | TAKAMURE N, KONDYURIN A, MCKENZIE D R. Electric field assisted ion exchange of silver in soda-lime glass: a study of ion depletion layers and interactions with potassium. Journal of Applied Physics, 2019, 125(17):175104. DOI    
																																					URL
 | 
																													
																						| [10] | ZHU P X, MASUDA Y, KOUMOTO K K. The effect of surface charge on hydroxyapatite nucleation. Biomaterials, 2004, 25(17):3915-3921. DOI    
																																					URL
 | 
																													
																						| [11] | J LIANG W, RAHAMAN M N, DAY D E, et al. Bioactive borate glass scaffold for bone tissue engineering. Journal of Non-Crystalline Solids, 2008, 354(15/16):1690-1696. DOI    
																																					URL
 | 
																													
																						| [12] | HUANG W H, DELBERT E D, KANISA K, et al. Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. Journal of Materials Science: Materials in Medicine, 2006, 17(7):583-596. DOI    
																																					URL
 | 
																													
																						| [13] | YAO A H, WANG D P, FU Q, et al. Preparation of bioactive glasses with controllable degradation behavior and their bioactive characterization. Chinese Science Bulletin, 2007, 52(2):272-276. DOI    
																																					URL
 | 
																													
																						| [14] | LI Y D, RAHAMAN M N, BAL B S, et al. Conversion of bioactive borosilicate glass to multilayered hydroxyapatite in dilute phosphate solution. Journal of the American Ceramic Society, 2007, 90(12):3804-3810. | 
																													
																						| [15] | YAO A H, WANG D P, HUANG W H, et al. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. Journal of the American Ceramic Society, 2007, 90(1):303-306. DOI    
																																					URL
 | 
																													
																						| [16] | LIN Z Y, CHANG Y C, WANG D P, et al. Different simulated body fluid on mineralization of borosilicate bioactive glass-based bone cement. Journal of Inorganic Materials, 2021, 36(7):745-752. DOI    
																																					URL
 | 
																													
																						| [17] | DENG Z W, LIN B C, JIANG Z H, et al. Hypoxia-mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. International Journal of Biological Sciences, 2019, 15(6):1113-1124. DOI    
																																					URL
 | 
																													
																						| [18] | WANG H, ZHAO S C, CUI X, et al. Evaluation of three- dimensional silver-doped borate bioactive glass scaffolds for bone repair: biodegradability, biocompatibility, and antibacterial activity. Journal of Materials Research, 2015, 30(18):2722-2735. DOI    
																																					URL
 | 
																													
																						| [19] | KOKUBO T, KUSHITANI H, SAKKA S, et al. Solutions able to reproduce in vivo surface-structure changes in bioactive glass- ceramic A-W. Journal of Biomedical Materials Research, 1990, 24:721-734. DOI    
																																					URL
 | 
																													
																						| [20] | YAO A H, LIN J, HUANG W H, et al. Formation mechanism of multilayered structure on surface of bioactive borosilicate glass. Chinese Journal of Inorganic Chemistry, 2008, 24(7):1132-1136. | 
																													
																						| [21] | FERRARIS S, NOMMEOTS-NOMM A, SPRIANO S, et al. Surface reactivity and silanization ability of borosilicate and Mg-Sr-based bioactive glasses. Applied Surface Science, 2019, 475:43-55. DOI    
																																					URL
 | 
																													
																						| [22] | TAINIO J M, SALAZAR D A A, NOMMEOTS-NOMM A, et al. Structure and in vitro dissolution of Mg and Sr containing borosilicate bioactive glasses for bone tissue engineering. Journal of Non-Crystalline Solids, 2020, 533:119893-119902. DOI    
																																					URL
 | 
																													
																						| [23] | BANERJEE J, KIM S H, PANTANO C G. Elemental areal density calculation and oxygen speciation for flat glass surfaces using X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 2016, 450:185-193. DOI    
																																					URL
 | 
																													
																						| [24] | BRAUER D S, MÖNCKE D. Introduction to the structure of silicate, phosphate and borate glasses. RSC Smart Materials, 2016, 23:61-88. |