[1] TANG G D, WEI W, ZHANG J,et al. Realizing high figure of merit in phase-separated polycrystalline Sn1-xPbxSe. Journal of the American Chemical Society, 2016, 138(41): 13647-13654. [2] WEI W, CHANG C, YANG T, et al. Achieving high thermoelectric figure of merit in polycrystalline SnSe via introducing Sn vacancies. Journal of the American Chemical Society, 2018, 140(1): 499-505. [3] PEI Y Z, LALONDE A, IWANAGA S,et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environment Science, 2011, 4(6): 2085-2089. [4] LIMBU N, RAM M, JOSHI H,et al. Enhanced electronic and thermoelectric properties of p-type doped filled skutterudites RFe4Sb12(R=Pr, Nd). Journal of Applied Physics, 2020, 128(14): 145104. [5] HAN S H, ZHOU Z Z, SHENG C Y, et al. High thermoelectric performance of half-Heusler compound BiBaK with intrinsically low lattice thermal conductivity. Journal of Physics-Condensed Matter, 2020, 32(42): 425704. [6] LUU S D N, PARASHCHUK T, KOSONOWSKI A,et al. Structural and thermoelectric properties of solid-liquid In4Se3-In composite. Journal of Electronic Materials, 2020, 48(9): 5418-5427. [7] XIE W, POPULOH S, GALAZKA K,et al. Thermoelectric study of crossroads material MnTe via sulfur doping. Journal of Applied Physics, 2014, 115(10): 103707. [8] SHE X, SU X, XIE H,et al. Ultrafast synthesis and thermoelectric properties of Mn1+xTe compounds. ACS Applied Materials & Interfaces, 2018, 10(30): 25519-25528. [9] ZHANG L B, QI H L, GAO J L,et al. Thermoelectric properties of Mn1+xTe-based compounds densified using high-pressure sintering. Journal of Electronic Materials, 2016, 46(5): 2894-2899. [10] REN Y, JIANG Q, YANG J,et al. Enhanced thermoelectric performance of MnTe via Cu doping with optimized carrier concentration. Journal of Materiomics, 2016, 2(2): 172-178. [11] DENG H Q, LOU X N, LU W Q, et al. High-performance eco-friendly MnTe thermoelectrics through introducing SnTe nanocrystals and manipulating band structure. Nano Energy, 2021, 81: 105649. [12] LI S, LOU X N, LI X T,et al. Realization of high thermoelectric performance in polycrystalline tin selenide through Schottky vacancies and endotaxial nanostructuring. Chemistry of Materials, 2020, 32: 9761-9770. [13] DONG J, WU C F, PEI J,et al. Lead-free MnTe mid-temperature thermoelectric materials: facile synthesis, p-type doping and transport properties. Journal of Materials Chemistry C, 2018, 6(15): 4265-4272. [14] BANIK A, GHOSH T, ARORA R,et al. Engineering ferroelectric instability to achieve ultralow thermal conductivity and high thermoelectric performance in Sn1-xGexTe. Energy & Environment Science, 2019, 12(2): 589-595. [15] TAN G J, SHI F Y, HAO S Q, et al. Valence band modification and high thermoelectric performance in SnTe heavily alloyed with MnTe. Journal of The American Chemical Society, 2015, 137(35): 11507-11516. [16] 迪安J A. 兰氏化学手册, 3版. 科学出版社, 1993: 3-8. [17] CHENG Y, YANG J, JIANG Q,et al. CuCrSe2 ternary chromium chalcogenide: facile fabrication, doping and thermoelectric properties. Journal of The American Ceramic Society, 2015, 98(12): 3975-3980. [18] LU W, LI S, XU R,et al. Boosting thermoelectric performance of SnSe via tailoring band structure, suppressing bipolar thermal conductivity, and introducing large mass fluctuation. ACS Applied Materials & Interfaces, 2019, 11(48): 45133-45141. [19] XIN J, YANG J, JIANG Q,et al. Reinforced bond covalency and multiscale hierarchical architecture to high performance eco-friendly MnTe-based thermoelectric materials. Nano Energy, 2019, 57: 703-710. [20] BASIT A, YANG J, JIANG Q,et al. Effect of Sn doping on thermoelectric properties of p-type manganese telluride. Journal of Alloys and Compounds, 2019, 777: 968-973. [21] REN Y, JIANG Q, YANG J,et al. Synergistic effect by Na doping and S substitution for high thermoelectric performance of p-type MnTe. Journal of Materials Chemistry C, 2017, 5(21): 5076-5082. [22] LUO Y, YANG J, JIANG Q,et al. Large enhancement of thermoelectric performance of CuInTe2 via a synergistic strategy of point defects and microstructure engineering. Nano Energy, 2015, 18: 37-46. |