无机材料学报 ›› 2022, Vol. 37 ›› Issue (7): 717-723.DOI: 10.15541/jim20210610
所属专题: 【结构材料】高熵陶瓷; 【能源环境】热电材料
王鹏将1(), 康慧君1(), 杨雄1, 刘颖2, 程成1, 王同敏1
收稿日期:
2021-10-05
修回日期:
2021-11-28
出版日期:
2022-07-20
网络出版日期:
2021-12-02
通讯作者:
康慧君, 教授. E-mail: kanghuijun@dlut.edu.cn作者简介:
王鹏将(1996-), 男, 硕士研究生. E-mail: wpj@mail.dlut.edu.cn
基金资助:
WANG Pengjiang1(), KANG Huijun1(), YANG Xiong1, LIU Ying2, CHENG Cheng1, WANG Tongmin1
Received:
2021-10-05
Revised:
2021-11-28
Published:
2022-07-20
Online:
2021-12-02
Contact:
KANG Huijun, professor. E-mail: kanghuijun@dlut.edu.cnAbout author:
WANG Pengjiang (1996-), male, Master candidate. E-mail: wpj@mail.dlut.edu.cn
Supported by:
摘要:
ZrNiSn基half-Heusler热电材料具有较高的热导率, 限制了其热电性能进一步提高。为了降低晶格热导率, 本研究采用磁悬浮熔炼和放电等离子烧结的方法制备ZrNiSn和Zr0.5Hf0.5Ni1-xPtxSn (x=0, 0.1, 0.15, 0.2, 0.25, 0.3)高熵half-Heusler热电合金。在Zr位进行Hf原子替代, Ni位进行Pt原子替代以调控该合金的构型熵, 并研究构型熵对热电性能的影响。本工作优化了Zr0.5Hf0.5Ni0.85Pt0.15Sn在673 K的最小晶格热导率和双极扩散热导率之和为2.1 W·m-1·K-1, 与ZrNiSn相比降低了约58%。这一发现为降低ZrNiSn基合金的晶格热导率提供了一种有效的策略, 有助于改善材料的热电性能。
中图分类号:
王鹏将, 康慧君, 杨雄, 刘颖, 程成, 王同敏. 熵调控抑制ZrNiSn基half-Heusler热电材料的晶格热导率[J]. 无机材料学报, 2022, 37(7): 717-723.
WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment[J]. Journal of Inorganic Materials, 2022, 37(7): 717-723.
图2 Zr0.5Hf0.5Ni1-xPtxSn的二次电子照片
Fig. 2 Secondary electron images of Zr0.5Hf0.5Ni1-xPtxSn (a) x=0; (b) x=0.1; (c) x=0.15; (d) x=0.2; (e) x=0.25; (f) x=0.3
图4 ZrNiSn和Zr0.5Hf0.5Ni1-xPtxSn试样的(a)电导率与温度的变化关系, (b)室温载流子浓度和迁移率与Pt掺杂量的变化关系, (c)Seebeck系数和(d)功率因子与温度的变化关系
Fig. 4 (a) Temperature dependence of electrical conductivity, (b) room temperature carrier concentration and carrier mobility varied with Pt content, temperature dependence of (c) Seebeck coefficient and (d) power factor of ZrNiSn and Zr0.5Hf0.5Ni1-xPtxSn
图5 ZrNiSn和Zr0.5Hf0.5Ni1-xPtxSn试样的(a)热扩散系数和(b)比热容与温度的变化关系
Fig. 5 Temperature dependence of (a) thermal diffusivity and (b) specific heat capacity for ZrNiSn and Zr0.5Hf0.5Ni1-xPtxSn samples
图6 (a)ZrNiSn和Zr0.5Hf0.5Ni1-xPtxSn试样总热导率与温度的变化关系, (b) 923 K时(κl+κb)随构型熵的变化关系, (c) (κl+κb)与温度的变化关系, (d) 不同样品的(κl+κb)的对比[17,23-24,35]
Fig. 6 (a) Temperature dependence of total thermal conductivity, (b) change of lattice thermal conductivity with configuration entropy at 923 K, (c) temperature dependence of lattice thermal conductivity of Zr0.5Hf0.5Ni1-xPtxSn (x=0, 0.1, 0.15, 0.2, 0.25, 0.3), and (d) comparison of lattice thermal conductivity of different samples [17,23-24,35]
[1] | CHEN Z Y, GAO B, TANG J, et al. Low lattice thermal conductivity by alloying SnTe with AgSbTe2 and CaTe/MnTe. Applied Physics Letters, 2019, 115(7): 0739031. |
[2] | GLEN A S. New Materials and Performance Limits for Thermoelectric Cooling. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995. |
[3] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008, 7(2): 105-114.
DOI URL |
[4] |
CHANG C, WU M H, HE D S, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018, 360(6390): 778-782.
DOI URL |
[5] | LI J, WANG Y, YANG X, et al. Processing bulk insulating CaTiO3 into a high-performance thermoelectric material. Chemical Engineering Journal, 2022, 428: 131121. |
[6] |
MA Y, HEIJL R, PALMQVIST A E C. Composite thermoelectric materials with embedded nanoparticles. Journal of Materials Science, 2013, 48(7): 2767-2778.
DOI URL |
[7] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14): 1605884. |
[8] |
FANG T, ZHENG S Q, ZHOU T, et al. Computational prediction of high thermoelectric performance in p-type half-Heusler compounds with low band effective mass. Physical Chemistry Chemical Physics, 2017, 19(6): 4411-4417.
DOI URL |
[9] |
MAKONGO J P A, MISRA D K, ZHOU X Y, et al. Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. Journal of the American Chemical Society, 2011, 133(46): 18843-18852.
DOI URL |
[10] |
GALAZKA K, XIE W J, POPULOH S, et al. Tailoring thermoelectric properties of Zr0.43Hf0.57NiSn half-Heusler compound by defect engineering. Rare Metals, 2020, 39(6): 659-670.
DOI URL |
[11] | BOS J W G, DOWNIE R A. Half-Heusler thermoelectrics: a complex class of materials. Journal of Physics-Condensed Matter, 2014, 26(43): 433201. |
[12] | ZHU T J, FU C G, XIE H H, et al. High efficiency half-Heusler thermoelectric materials for energy harvesting. Advanced Energy Materials, 2015, 5(19): 1500588. |
[13] |
LIU Y F, SAHOO P, MAKONGO J P A, et al. Large enhancements of thermopower and carrier mobility in quantum dot engineered bulk semiconductors. Journal of the American Chemical Society, 2013, 135(20): 7486-7495.
DOI URL |
[14] |
ALIABAD H A R, NODEHI Z, MALEKI B, et al. Electronical and thermoelectric properties of half-Heusler ZrNiPb under pressure in bulk and nanosheet structures for energy conversion. Rare Metals, 2019, 38(11): 1015-1023.
DOI URL |
[15] |
GRAF T, FELSER C, PARKIN S S P. Simple rules for the understanding of Heusler compounds. Progress in Solid State Chemistry, 2011, 39(1): 1-50.
DOI URL |
[16] | YANG X, LIU D Q, LI J B, et al. Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance. Journal of Materials Science & Technology, 2021, 87: 39-45. |
[17] |
YANG X, JIANG Z, KANG H J, et al. Enhanced thermoelectric performance of Zr1-xTaxNiSn half-Heusler alloys by diagonal-rule doping. ACS Applied Materials Interfaces, 2020, 12(3): 3773-3783.
DOI URL |
[18] |
YAN J L, LIU F S, MA G H, et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 2018, 157: 129-134.
DOI URL |
[19] |
SHEN Q, CHEN L, GOTO T, et al. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds. Applied Physics Letters, 2001, 79(25): 4165-4167.
DOI URL |
[20] | YANG X, JIANG Z, LI J B, et al. Identification of the intrinsic atomic disorder in ZrNiSn-based alloys and their effects on thermoelectric properties. Nano Energy, 2020, 78: 105372. |
[21] |
SCHWALL M, BALKE B. Phase separation as a key to a thermoelectric high efficiency. Physical Chemistry Chemical Physics, 2013, 15(6): 1868-1872.
DOI URL |
[22] | XIE W J, WEIDENKAFF A, TANG X F, et al. Recent advances in nanostructured thermoelectric half-Heusler compounds. Nanomaterials- Basel, 2012, 2(4): 379-412. |
[23] |
LIU Y T, XIE H H, FU C G, et al. Demonstration of a phonon-glass electron-crystal strategy in (Hf,Zr)NiSn half-Heusler thermoelectric materials by alloying. Journal of Materials Chemistry A, 2015, 3(45): 22716-22722.
DOI URL |
[24] |
XIE H H, WANG H, PEI Y Z, et al. Beneficial contribution of alloy disorder to electron and phonon transport in half-Heusler thermoelectric materials. Advanced Functional Materials, 2013, 23(41): 5123-5130.
DOI URL |
[25] | SENKOV O N, MILLER J D, MIRACLE D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015, 6: 6529. |
[26] |
ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014, 61: 1-93.
DOI URL |
[27] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, 6(5): 299-303.
DOI URL |
[28] | CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 2004, 375: 213-218. |
[29] | KOZELJ P, VRTNIK S, JELEN A, et al. Discovery of a superconducting high-entropy alloy. Physical Review Letters, 2014, 113(10): 107001. |
[30] |
KAO Y F, CHEN S K, SHEU J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 2010, 35(17): 9046-9059.
DOI URL |
[31] |
BERARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016, 4(24): 9536-9541.
DOI URL |
[32] | LIU R H, CHEN H Y, ZHAO K P, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017, 29(38): 1702712. |
[33] | SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high- temperature thermoelectric materials. Journal of Applied Physics, 2015, 118(18): 184905. |
[34] |
YANG Q Y, QIU P F, SHI X, et al. Application of entropy engineering in thermoelectrics. Journal of Inorganic Materials, 2021, 36(4): 347-354.
DOI URL |
[35] | GALAZKA K, POPULOH S, XIE W J, et al. Improved thermoelectric performance of (Zr0.3Hf0.7)NiSn half-Heusler compounds by Ta substitution. Journal of Applied Physics, 2014, 115(18): 183704. |
[36] |
XIE W J, YAN Y G, ZHU S, et al. Significant ZT enhancement in p-type Ti(Co,Fe)Sb-InSb nanocomposites via a synergistic high-mobility electron injection, energy-filtering and boundary- scattering approach. Acta Materialia, 2013, 61(6): 2087-2094.
DOI URL |
[37] |
YANG J, MEISNER G P, CHEN L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004, 85(7): 1140-1142.
DOI URL |
[1] | 郭天民, 董江波, 陈正鹏, 饶睦敏, 李明飞, 李田, 凌意瀚. 中温固体氧化物燃料电池的高熵双钙钛矿阴极材料: 兼容性与活性研究[J]. 无机材料学报, 2023, 38(6): 693-700. |
[2] | 贺丹琪, 魏明旭, 刘蕤之, 汤志鑫, 翟鹏程, 赵文俞. 一步法制备重费米子YbAl3热电材料及其性能提升[J]. 无机材料学报, 2023, 38(5): 577-582. |
[3] | 程成, 李建波, 田震, 王鹏将, 康慧君, 王同敏. In2O3/InNbO4复合材料的热电性能研究[J]. 无机材料学报, 2022, 37(7): 724-730. |
[4] | 娄许诺, 邓后权, 李爽, 张青堂, 熊文杰, 唐国栋. Ge掺杂MnTe材料的热电输运性能[J]. 无机材料学报, 2022, 37(2): 209-214. |
[5] | 李汪国, 刘佃光, 王珂玮, 马百胜, 刘金铃. 闪烧合成高熵氧化物陶瓷(MgCoNiCuZn)O的性能[J]. 无机材料学报, 2022, 37(12): 1289-1294. |
[6] | 金敏, 白旭东, 张如林, 周丽娜, 李荣斌. 区熔法制备金属硫化物Ag2S及其热电性能研究[J]. 无机材料学报, 2022, 37(1): 101-106. |
[7] | 张岑岑, 王雪, 彭良明. 基于分步式双重调控n型(PbTe)1-x-y(PbS)x(Sb2Se3)y体系的热电传输特性[J]. 无机材料学报, 2021, 36(9): 936-942. |
[8] | 张丰年, 郭猛, 苗洋, 高峰, 成楚飞, 程富豪, 刘宇峰. 高熵陶瓷(Zr1/7Hf1/7Ce1/7Y2/7La2/7)O2-δ的制备及烧结行为[J]. 无机材料学报, 2021, 36(4): 372-378. |
[9] | 王皓轩, 刘巧沐, 王一光. 高熵过渡金属碳化物陶瓷的研究进展[J]. 无机材料学报, 2021, 36(4): 355-364. |
[10] | 王义良, 艾云龙, 杨书伟, 梁炳亮, 郑振环, 欧阳晟, 何文, 陈卫华, 刘长虹, 张建军, 刘智勇. M3O4(M=FeCoCrMnMg)高熵氧化物粉体的简易制备及超电容性能研究[J]. 无机材料学报, 2021, 36(4): 425-430. |
[11] | 杨青雨, 仇鹏飞, 史迅, 陈立东. 熵工程在热电材料中的应用[J]. 无机材料学报, 2021, 36(4): 347-354. |
[12] | 曾建军, 张魁宝, 陈代梦, 郭海燕, 邓婷, 刘奎. 真空烧结制备(La0.2Nd0.2Sm0.2Gd0.2Er0.2)2Zr2O7高熵透明陶瓷[J]. 无机材料学报, 2021, 36(4): 418-424. |
[13] | 朱嘉桐, 楼志豪, 张萍, 赵佳, 孟轩宇, 许杰, 高峰. 稀土钽酸盐(RETaO4)高熵陶瓷的制备与热学性能研究[J]. 无机材料学报, 2021, 36(4): 411-417. |
[14] | 桑玮玮, 张红松, 陈华辉, 温斌, 李新春. (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7高熵陶瓷的制备及热物理性能[J]. 无机材料学报, 2021, 36(4): 405-410. |
[15] | 张晓燕, 刘馨玥, 闫金华, 谷耀行, 齐西伟. 钙钛矿型(La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3高熵氧化物陶瓷的制备及性能研究[J]. 无机材料学报, 2021, 36(4): 379-385. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||