无机材料学报 ›› 2024, Vol. 39 ›› Issue (5): 554-560.DOI: 10.15541/jim20230524

• 研究快报 • 上一篇    下一篇

非化学计量溶液区熔法生长大尺寸InSe晶体及表征

金敏1(), 马玉鹏2, 魏天然2, 林思琪1, 白旭东3, 史迅4, 刘学超4()   

  1. 1.上海电机学院 材料学院, 上海 201306
    2.上海交通大学 材料科学与工程学院, 上海 200240
    3.乌镇实验室, 桐乡 314500
    4.中国科学院 上海硅酸盐研究所, 上海 200050
  • 收稿日期:2023-11-09 出版日期:2024-05-20 网络出版日期:2024-03-08
  • 通讯作者: 刘学超, 研究员. E-mail: xcliu@mail.sic.ac.cn
  • 作者简介:金 敏(1982-), 男, 教授. E-mail: jmaish@aliyun.com

Growth and Characterization of Large-size InSe Crystal from Non-stoichiometric Solution via a Zone Melting Method

JIN Min1(), MA Yupeng2, WEI Tianran2, LIN Siqi1, BAI Xudong3, SHI Xun4, LIU Xuechao4()   

  1. 1. School of Materials Science, Shanghai Dianji University, Shanghai 201306, China
    2. School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    3. Wuzhen Laboratory, Tongxiang 314500, China
    4. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2023-11-09 Published:2024-05-20 Online:2024-03-08
  • Contact: LIU Xuechao, professor. E-mail: xcliu@mail.sic.ac.cn
  • About author:JIN Min (1982-), male, professor. E-mail: jmaish@aliyun.com
  • Supported by:
    National Natural Science Foundation of China(52272006);National Natural Science Foundation of China(52371193);National Natural Science Foundation of China(52001231);Shanghai Academic/Technology Research Leader(23XD1421200);Oriental Scholars of Shanghai Universities(TP2022122);Space Application System of China Manned Space Program, Shanghai Rising-star Program(23QA1403900);Open Research Fund of Key Laboratory of Polar Materials and Devices, Ministry of Education

摘要:

硒化铟(InSe)是一种具有奇异物理性能的III-VI族半导体材料, 在光伏、光学、热电等领域有着广泛的应用潜力。由于InSe的非一致熔融特性及InSe、In6Se7和In4Se3之间复杂的包晶反应, 制备大尺寸InSe晶体十分困难。本研究采用区熔法制备了InSe晶体, 该方法具有成本低、固液界面优化等优点。基于In-Se体系的包晶反应, 发现In与Se的初始物质的量比对InSe晶体生长非常重要, 本工作使用精确非化学计量的In0.52Se0.48溶液生长晶体, 使InSe晶体的获得率达到83%左右。实验最终获得了ϕ27 mm×130 mm的晶棒, 并成功剥离出尺寸ϕ27 mm×50 mm的片状InSe单晶, XRD图谱中检测到(00l)衍射峰, 说明晶体的质量良好。InSe晶体呈现六方结构, 各元素在基体中均匀分布, 在1800 nm波长下的透射率为~55.1%, 带隙能量为~1.22 eV。在800 K下, InSe晶体沿(001)方向的最大电导率σ约为1.55×102 S·m-1, 垂直于(001)方向的最低热导率κ约为0.48 W·m-1·K-1。上述结果表明, 区熔法是制备大尺寸InSe晶体的一种有效方法, 可用于制备多类材料。该工作制备的InSe的电学和热学行为也为今后InSe晶体的应用提供了重要参考。

关键词: InSe晶体, 区熔法, 非化学计量, 电导率, 热导率

Abstract:

Indium selenide (InSe) is a III-VI group semiconductor with interesting physical properties and has wide potential applications in the fields of photovoltaics, optics, thermoelectrics, and so on. However, the production of large-size InSe crystal is difficult due to the inconsistent melting of In and Se elements and peritectic reactions between InSe, In6Se7 and In4Se3 phases. In this work, a zone melting method, which has advantages of low cost and solid-liquid interface optimization, is employed for InSe crystal preparation. Because the initial mole ratio of In to Se is of great importance to InSe crystal growth, the non-stoichiometric In0.52Se0.48 solution was precisely used for growth based on the peritectic reaction of In-Se system, resulting in a InSe crystal productivity ratio at about 83%. An ingot with dimensions ϕ27 mm×130 mm is obtained with a typical slab-like InSe crystal in the size of ϕ27 mm×50 mm. The successfully peeled cleavage plane exhibits the good single-crystalline character as only (00l) peaks are detected in the X-ray diffraction pattern. This crystal has a hexagonal structure, and its elements are distributed uniformly in the matrix with transmittance of ~55.1% at 1800 nm wavelength, band gap energy of about 1.22 eV, a maximum electrical conductivity (σ) of about 1.55×102 S·m-1 along the (001) direction, and a lowest thermal conductivity (κ) of about 0.48 W·m-1·K-1 perpendicular to the (001) direction at 800 K. These results imply that the zone melting method is indeed an effective approach for fabricating large-size InSe crystal, which could be applied for various fields. Above measured electrical and thermal behaviors are expected to provide a significant reference for InSe crystal application in the future.

Key words: InSe crystal, zone melting method, non-stoichiometric, electrical conductivity, thermal conductivity

中图分类号: