| [1] | 
																						 
											  PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications. Science, 2002,296(5566):280-284. 
											 												 
																																					URL    
																																					PMID
																							 											 | 
										
																													
																						| [2] | 
																						 
											  CAO X Q, VASSEN R, STOVER D. Ceramic materials for thermal barrier coatings. Journal of the European Ceramics Society, 2004,24(1):1-10.
											 											 | 
										
																													
																						| [3] | 
																						 
											  RACEK O, BEMDT C C. Mechanical property variations within thermal barrier coatings. Surface Coating Technology, 2007,202(2):362-369.
											 											 | 
										
																													
																						| [4] | 
																						 
											  FENG J, REN X R, WANG X Y, et al. Thermal conductivity of ytterbia-stabilized zirconia. Script Materialia, 2012,66(1):41-44.
											 											 | 
										
																													
																						| [5] | 
																						 
											  ZHAO M, REN X R, YANG J, et al. Thermo-mechanical properties of ThO2-doped Y2O3 stabilized ZrO2 for thermal barrier coatings. Ceramics International, 2016,42(1):501-508.
											 											 | 
										
																													
																						| [6] | 
																						 
											  ZHENG Q, WU F S, CHEN L, et al. Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum. Materials Letters, 2020,268:127586.
											 											 | 
										
																													
																						| [7] | 
																						 
											  SHIAN S, SARIN P, GURAK M, et al. The tetragonal-monoclinic, ferroelastic transformation in yttrium tantalate and effect of zirconia alloying. Acta Materialia, 2014,69:196-202.
											 											 | 
										
																													
																						| [8] | 
																						 
											  WANG J, CHONG X Y, ZHOU R, et al. Microstructure and thermal properties of RETaO4 (RE= Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scripta Materialia, 2017,126:24-28.
											 											 | 
										
																													
																						| [9] | 
																						 
											  YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303.
											 											 | 
										
																													
																						| [10] | 
																						 
											  OSES C, TOHER C, CURTAROLO S, et al. High-entropy ceramics. Nature Reviews Materials, 2020,5(4):295-309.
											 											 | 
										
																													
																						| [11] | 
																						 
											  顾俊峰, 邹冀, 张帆, 等. 高熵陶瓷材料研究进展. 中国材料研究进展, 2019,38(9):855-865.
											 											 | 
										
																													
																						| [12] | 
																						 
											  CHEN L, WANG K, SU W T, et al. Research progress of transition metal non-oxide high-entropy ceramics. Journal of Inorganic Materials, 2020,35(7):748-758.
											 											 | 
										
																													
																						| [13] | 
																						 
											  MIRACLE D B, SENKOV O N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017,122:448-511.
											 											 | 
										
																													
																						| [14] | 
																						 
											  ROST C M, SACHET E, BORMAN T, et al. Entropy-stabilized oxides. Nature Communications, 2015,6:8485. 
											 												 
																																					URL    
																																					PMID
																							 											 | 
										
																													
																						| [15] | 
																						 
											  YAN X L, CONSTANTIN L, LU Y F, et al. (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics with low thermal conductivity. Journal of the American Ceramic Society, 2018,101(10):4486-4491.
											 											 | 
										
																													
																						| [16] | 
																						 
											  LIU D, LIU H H, NING S S, et al. Synthesis of high-purity high-entropy metal diboride powders by boro/carbothermal reduction. Journal of the American Ceramic Society, 2019,102(12):7071-7076.
											 											 | 
										
																													
																						| [17] | 
																						 
											  JIN T, SANG X H, UNOCIC R R, et al. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Advanced Materials, 2018,30(23):1707512.
											 											 | 
										
																													
																						| [18] | 
																						 
											  BRAUN J L, ROST C M, LIM M, et al. Charge-induced disorder controls the thermal conductivity of entropy-stabilized oxides. Advanced Materials, 2018,30(24):1805004.
											 											 | 
										
																													
																						| [19] | 
																						 
											  LI F, ZHOU L, LIU J X, et al. High-entropy pyrochlores with low thermal conductivity for thermal barrier coating materials. Journal of Advanced Ceramics, 2019,8(4):576-582.
											 											 | 
										
																													
																						| [20] | 
																						 
											  WRIGHT A J, WANG Q Y, HUANG C Y, et al. From high-entropy ceramics to compositionally-complex ceramics: a case study of fluorite oxides. Journal of the European Ceramic Society, 2020,40(54):2120-2129.
											 											 | 
										
																													
																						| [21] | 
																						 
											  ZHOU L, LI F, LIU J X, et al. High-entropy thermal barrier coating of rare-earth zirconate: a case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying. Journal of the European Ceramic Society, 2020,40(15):5731-5739.
											 											 | 
										
																													
																						| [22] | 
																						 
											  REN K, WANG Q K, SHAO G, et al. Multicomponent high-entropy zirconates with comprehensive properties for advanced thermal barrier coating. Scripta Materialia, 2020,78:382-386.
											 											 | 
										
																													
																						| [23] | 
																						 
											  SCHLICHTING K W, PADTURE N P, KLEMENS P G. Thermal conductivity of dense and porous yttria-stabilized zirconia. Journal of Materials Science, 2001,36(12):3003-3010.
											 											 | 
										
																													
																						| [24] | 
																						 
											  EVANS A G, CHARLES E A. Fracture toughness determinations by indentation. Journal of the American Ceramic Society, 1976,59(7/8):371-372.
											 											 | 
										
																													
																						| [25] | 
																						 
											  CHEN L, HU M Y, WU P, et al. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. Journal of the American Ceramic Society, 2019,102(8):4809-4821.
											 											 | 
										
																													
																						| [26] | 
																						 
											  WU P, CHEN L, CHEN W, et al. Investigation on microstructures and thermo-physical properties of ferroelastic (Y1-xDyx)TaO4 ceramics. Materialia, 2018,4:478-486.
											 											 | 
										
																													
																						| [27] | 
																						 
											  LAI C H, LIN S J, YEH J W, et al. Preparation and characterization of AlCrTaTiZr muti-element nitride coatings. Surface Coating Technology, 2006,201(6):3275-3280.
											 											 |