无机材料学报 ›› 2020, Vol. 35 ›› Issue (1): 29-34.DOI: 10.15541/jim20190400
所属专题: MAX相和MXene材料; 陶瓷基复合材料; 结构陶瓷论文精选(2020); 【虚拟专辑】吸波材料(2020~2021); 【虚拟专辑】层状MAX,MXene及其他二维材料
收稿日期:
2019-08-08
修回日期:
2019-09-26
出版日期:
2020-01-20
网络出版日期:
2019-10-25
作者简介:
党潇琳(1996-), 女, 博士研究生. E-mail:dangxl@mail.nwpu.edu.cn
基金资助:
DANG Xiao-Lin,FAN Xiao-Meng(),YIN Xiao-Wei(),MA Yu-Zhao,MA Xiao-Kang
Received:
2019-08-08
Revised:
2019-09-26
Published:
2020-01-20
Online:
2019-10-25
About author:
DANG Xiao-Lin (1996-), female, PhD candidate. E-mail:dangxl@mail.nwpu.edu.cn
Supported by:
摘要:
连续纤维增韧陶瓷基复合材料(Ceramic Matrix Composites, CMCs)因其优异的性能在航空发动机、空天飞行器热防护系统、核能电站等领域具有广泛的应用前景。现阶段, CMCs的应用已由单一结构承载向多功能一体化发展。MAX相是一类能够发生塑性变形的三元层状陶瓷, 具有高导电、抗辐照和抗烧蚀等优异性能, 将其引入CMCs可实现强韧化与抗辐照/抗烧蚀/电磁屏蔽效能的协同提高, 满足多功能一体化CMCs的应用需求。本文综述了MAX相作为CMCs界面相和基体相的研究进展, 阐述了其设计机理, 并展望了MAX相在CMCs中的应用前景。
中图分类号:
党潇琳, 范晓孟, 殷小玮, 马昱昭, 马晓康. 多功能一体化MAX相改性连续纤维增韧陶瓷基复合材料的研究进展[J]. 无机材料学报, 2020, 35(1): 29-34.
DANG Xiao-Lin, FAN Xiao-Meng, YIN Xiao-Wei, MA Yu-Zhao, MA Xiao-Kang. Research Progress on Multi-functional Integration MAX Phases Modified Continuous Fiber-reinforced Ceramic Matrix Composites[J]. Journal of Inorganic Materials, 2020, 35(1): 29-34.
图2 Ti3AlC2材料辐照前后的原子结构及原子分布[20] (a, b) Pristine of hcp-Ti3AlC2; (c, d) γ-(Ti3Al)C2; (e, f) fcc-(Ti3Al)C2
Fig. 2 Schematic of the atomic arrangements for Ti3AlC2 before and after irradiation[20]
图4 C/SiC-Zr3Al3C5的烧蚀表面(a)、截面(b)和烧蚀机理示意图(c)[52]
Fig. 4 The ablation surface (a), cross section (b) and schematic of ablation mechanism (c) for C/SiC-Zr3Al3C5[52]
图5 SiC/SiC复合材料的抗弯强度、断裂韧性和电磁屏蔽效能[34,45,54-56]
Fig. 5 The flexural strength, fracture toughness and electromagnetic interference (EMI) shielding effectiveness of SiC/ SiC-based composites[34,45,54-56]
[1] |
YIN X W, CHENG L F, ZHANG L T , et al. Fibre-reinforced multifunctional SiC matrix composite materials. Int. Mater. Rev., 2017,62(3):117-172.
DOI URL |
[2] |
NASLAIN R . Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol., 2004,64(2):155-170.
DOI URL |
[3] |
KRENKEL W, BERNDT F . C/C-SiC composites for space applications and advanced friction systems. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2005,412(1):177-181.
DOI URL PMID |
[4] |
MA Q S, LIU H T, PAN Y , et al. Research progress on the application of C/SiC composites in scramjet. J. Inorg. Mater., 2013,28(3):247-255.
DOI URL |
[5] | 张立同 . 纤维增韧碳化硅陶瓷复合材料—模拟、表征与设计. 北京: 化学工业出版社, 2009. |
[6] |
NOWOTNY V . Strukturchemie einiger verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn. Prog. Solid State Chem., 1971,5(71):27-70.
DOI URL |
[7] |
BARSOUM M W, EI-RAGHY T . Synthesis and characterization of a remarkable ceramic: Ti3SiC2. J. Am. Ceram. Soc., 1996,79(7):1953-1956.
DOI URL |
[8] |
LI M, LI Y B, LUO K , et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach J. Inorg. Mater., 2019,34(1):60-64.
DOI URL PMID |
[9] |
ZHANG J, LIU B, WANG J Y , et al. Low-temperature instability of Ti2SnC: a combined transmission electron microscopy, differential scanning calorimetry, and x-ray diffraction investigations. J. Mater. Res., 2009,24(1):39-49.
DOI URL |
[10] |
SUN Z M . Progress in research and development on MAX phases: a family of layered ternary compounds. Int. Mater. Rev., 2013,56(3):143-166.
DOI URL |
[11] |
BARSOUM M W, RADOVIC M . Elastic and mechanical properties of the MAX phases. Ann. Rev. Mater. Res., 2011,41(1):195-227.
DOI URL PMID |
[12] |
BARSOUM M W, EI-RAGHY T . The MAX phases: unique new carbide and nitride materials. Am. Sci., 2001,89(4):334-343.
DOI URL |
[13] |
YANG C P, JIAO G Q, WANG B . Effects of interface properties on tensile strength of ceramic matrix composites. J. Inorg. Mater., 2009,24(5):919-923.
DOI URL PMID |
[14] |
SNEAD L L, BURCHELL T D, KATOH Y . Swelling of nuclear graphite and high quality carbon fiber composite under very high irradiation temperature. J. Nucl. Mater., 2008,381(1/2):55-61.
DOI URL |
[15] |
KATOH Y, OZAWA K, SHIH C , et al. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: properties and irradiation effects. J. Nucl. Mater., 2014,448(1/2/3):448-476.
DOI URL |
[16] |
LI M, ZHOU X B, YANG H , et al. The critical issues of SiC materials for future nuclear systems. Scripta Mater., 2018,143:149-153.
DOI URL |
[17] |
MA Y Z, YIN X W, FAN X M , et al. Modification and toughening of 3D needled C/SiC composite by deformable MAX phase-based matrix. Mat. Sci. Eng. A, 2018,712:397-405.
DOI URL |
[18] |
WHITTLE K R, BLACKFORD M G, AUGHTERSON R D , et al. Radiation tolerance of Mn+1AXn phases, Ti3AlC2 and Ti3SiC2. Acta Mater., 2010,58(13):4362-4368.
DOI URL |
[19] |
WANG C X, YANG T F, TRACY C L , et al. Role of the X and n factors in ion-irradiation induced phase transformations of Mn+1AXn phases. Acta Mater., 2018,144:432-446.
DOI URL |
[20] |
WANG C X, YANG T F, TRACY C L , et al. Disorder in Mn+1AXn phases at the atomic scale. Nat. Commun., 2019,10(1):622.
DOI URL PMID |
[21] |
WANG C X, YANG T F, XIAO J R , et al. Irradiation-induced structural transitions in Ti2AlC. Acta Mater., 2015,98:197-205.
DOI URL |
[22] |
WANG X H, ZHOU Y C . Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. J. Mater. Sci. Technol., 2010,26(5):385-416.
DOI URL |
[23] |
FAKIH H, JACQUES S, DEZELLUS O , et al. Phase equilibria and reactive chemical vapor deposition (RCVD) of Ti3SiC2. Journal of Phase Equilibria and Diffusion, 2008,29(3):239-246.
DOI URL |
[24] |
JACQUES S, FAKIH H, VIALA J C . Reactive chemical vapor deposition of Ti3SiC2 with and without pressure pulses: effect on the ternary carbide texture. Thin Solid Films, 2010,518(18):5071-5077.
DOI URL |
[25] |
FILBERT-DEMUT I, TRAVITZKY N, MOTZ G , et al. Polymer derived ceramics reinforced with Ti3SiC2 coated SiC fibers: a feasibility study. Mater. Lett., 2015,145:229-231.
DOI URL |
[26] |
FILBERT-DEMUT I, BEI G, HÖSCHEN T , et al. Influence of Ti3SiC2 fiber coating on interface and matrix cracking in an SiC fiber-reinforced polymer-derived ceramic. Adv. Eng. Mater., 2015,17(8):1142-1148.
DOI URL |
[27] |
LEE H G, KIM D, JEONG Y S , et al. Formation of Ti3SiC2 interphase of SiC fiber by electrophoretic deposition method. Journal of the Korean Ceramic Society, 2016,53(1):87-92.
DOI URL |
[28] |
LEE H G, KIM D, PARK J Y , et al. Formation of Ti3SiC2 interphase coating on SiCf/SiC composite by electrophoretic deposition. Inter. J. Appl. Ceram. Tec., 2017,15(3):602-610.
DOI URL |
[29] |
LI M, WANG K, WANG J , et al. Preparation of TiC/Ti2AlC coating on carbon fiber and investigation of the oxidation resistance properties. J. Am. Ceram. Soc., 2018,101(11):5269-5280.
DOI URL |
[30] |
GILBERT C J, BLOYER D R, BARSOUM M W , et al. Fatigue- crack growth and fracture properties of coarse and fine-grained Ti3SiC2. Scripta Mater., 2000,42(8):761-767.
DOI URL |
[31] |
YIN X W, HE S S, ZHANG L T , et al. Fabrication and characterization of a carbon fibre reinforced carbon-silicon carbide- titanium silicon carbide hybrid matrix composite. Mat. Sci. Eng. A-Struct., 2010,527(3):835-841.
DOI URL |
[32] |
LU C Y, YIN X W, LI X M . A novel in-situ synthesis route of Ti3SiC2-SiC composite by liquid silicon infiltration. J. Inorg. Mater., 2010,25(9):1003-1008.
DOI URL |
[33] |
FAN X M, YIN X W, WANG L , et al. Processing, microstructure and ablation behavior of C/SiC-Ti3SiC2 composites fabricated by liquid silicon infiltration. Corros. Sci., 2013,74:98-105.
DOI URL |
[34] |
MA X K, YIN X W, FAN X M , et al. Microstructure and properties of dense Tyranno-ZMI SiC/SiC containing Ti3Si(Al)C2 with plastic deformation toughening mechanism. J. Eur. Ceram. Soc., 2018,38(4):1069-1078.
DOI URL |
[35] |
DONG N, CHEN L Q, YIN X W , et al. Fabrication and electromagnetic interference shielding effectiveness of Ti3Si(Al)C2 modified Al2O3/SiC composites. Ceram. Int., 2016,42(8):9448-9454.
DOI URL |
[36] |
FAN X M, YIN X W, CHEN L Q , et al. Mechanical behavior and electromagnetic interference shielding properties of C/SiC-Ti3Si(Al)C2. J. Am. Ceram. Soc., 2016,99(5):1717-1724.
DOI URL |
[37] |
LENZ F, KRENKEL W . Fabrication of fiber composites with a MAX phase matrix by reactive melt infiltration. IOP Conference Series: Materials Science and Engineering, 2011,18(20):202030.
DOI URL |
[38] |
LENZ F, KRENKEL W . Carbon fiber reinforced ceramics based on reactive melt infiltration processes. Journal of the Korean Ceramic Society, 2012,49(4):287-294.
DOI URL |
[39] |
SPENCER C B, CÓRDOBA J M, OBANDO N H , et al. The reactivity of Ti2AlC and Ti3SiC2 with SiC fibers and powders up to temperatures of 1550 ℃. J. Am. Ceram. Soc., 2011,94(6):1737-1743.
DOI URL |
[40] |
ZHANG J W, HU C F, WANG Y G , et al. Interfacial reactions between polymer derived SiC fiber and Ti3Si(Al)C2. Key Eng. Mater., 2013,544:238-244.
DOI URL |
[41] |
GUO S Q, HU C F, GAO H , et al. SiC(SCS-6) fiber-reinforced Ti3AlC2 matrix composites: interfacial characterization and mechanical behavior. J. Eur. Ceram. Soc., 2015,35(5):1375-1384.
DOI URL |
[42] |
GUO S Q . Improvement of mechanical properties of SiC(SCS-6) fibre-reinforced Ti3AlC2 matrix composites with Ti barrier layer. J. Eur. Ceram. Soc., 2016,36(6):1349-1358.
DOI URL |
[43] |
YANG J S, DONG S M, XU C Y . Mechanical response and microstructure of 2D carbon fiber reinforced ceramic matrix composites with SiC and Ti3SiC2 fillers. Ceram. Int., 2016,42(2):3019-3027.
DOI URL |
[44] | YANG J S, DONG S M, HE P , et al. Fabrication Fabrication and properties of Cf/Ti3SiC2-SiC composites using Ti3SiC2 as inert filler. Key Eng. Mater., 2012,512-515:681-684. |
[45] |
MU Y, ZHOU W C, WAN F , et al. High-temperature dielectric and electromagnetic interference shielding properties of SiCf/SiC composites using Ti3SiC2 as inert filler. Composites Part A: Applied Science and Manufacturing, 2015,77:195-203.
DOI URL |
[46] |
SONG G M, LI S B, ZHAO C X , et al. Ultra-high temperature ablation behavior of Ti2AlC ceramics under an oxyacetylene flame. J. Eur. Ceram. Soc., 2011,31(5):855-862.
DOI URL |
[47] |
SHEN X T, LI K Z, LI H J , et al. Microstructure and ablation properties of zirconium carbide doped carbon/carbon composites. Carbon, 2010,48(2):344-351.
DOI URL |
[48] |
SONG G M, WANG Y J, ZHOU Y . Elevated temperature ablation resistance and thermophysical properties of tungsten matrix composites reinforced with ZrC particles. J. Mater. Sci., 2001,36(19):4625-4631.
DOI URL |
[49] |
HU S J, LI S B, LI H L , et al. Oxyacetylene torch testing and microstructural characterization of a Cr2AlC ceramic. J. Alloys Compd., 2018,740:77-81.
DOI URL |
[50] |
LI H L, LI S B, ZHANG L Q , et al. Synthesis and ultra-high temperature ablation behavior of a ZrC/Cr2AlC composite. Ceram. Int., 2016,42(5):5686-5692.
DOI URL |
[51] |
ZHOU Y C, HE L F, LIN Z J , et al. Synthesis and structure- property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems. J. Eur. Ceram. Soc., 2013,33(15/16):2831-2865.
DOI URL |
[52] |
MA Y Z, YIN X W, FAN X M , et al. Ablation behavior of Zr-Al(Si)-C layered carbides modified 3D needled C/SiC composites. Adv. Eng. Mater., 2019,21(6):1800936.
DOI URL |
[53] |
FAN X M, YIN X W, CAI Y Z , et al. Mechanical and electromagnetic interference shielding behavior of C/SiC composite containing Ti3SiC2. Adv. Eng. Mater., 2018,20(2):1700590.
DOI URL |
[54] |
LI X M, ZHANG L T, YIN X W , et al. Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4-SiC ceramic. Scripta Mater., 2010,63(6):657-660.
DOI URL |
[55] |
MU Y, ZHOU W C, WANG C , et al. Mechanical and electromagnetic shielding properties of SiCf/SiC composites fabricated by combined CVI and PIP process. Ceram. Int., 2014,40(7):10037-10041.
DOI URL |
[56] |
WANG H Y, ZHU D M, MU Y , et al. Effect of SiC/C preform densities on the mechanical and electromagnetic interference shielding properties of dual matrix SiC/C-SiC composites. Ceram. Int., 2015,41(10):14094-14100.
DOI URL |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||