[1] |
CHING W Y, MO Y, ARYAL S , et al. Intrinsic mechanical properties of 20 MAX-phase compounds. Journal of the American Ceramic Society, 2013,96(7):2292-2297.
DOI
URL
|
[2] |
SUN Z M . Progress in research and development on MAX phases: a family of layered ternary compounds. International Materials Reviews, 2011,56(3):143-166.
DOI
URL
|
[3] |
BARSOUM M W . The M N+1AXN phases: a new class of solids. Progress in Solid State Chemistry of Materials, 2000,28:201-281.
|
[4] |
FASHANDI H, DAHLQVIST M, LU J , et al. Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. Nature Materials, 2017,16:814.
DOI
URL
PMID
|
[5] |
LI M, LI Y, LUO K , et al. Synthesis of novel MAX phase Ti3ZnC2 via A-site-element-substitution approach. Journal of Inorganic Materials, 2019,34(1):60-64.
DOI
URL
|
[6] |
LI M, LU J, LUO K , et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019,141(11):4730-4737.
DOI
URL
PMID
|
[7] |
KRESSE G, FURTHMÜLLER J . Efficient iterative schemes for ab initi total-energy calculations using a plane-wave basis set. Physical Review B, 1996,54(16):11169-11186.
DOI
URL
PMID
|
[8] |
LIU S, CHANG K, MRÁZ S , et al.Modeling of metastable phase formation for sputtered Ti1-xAlxN thin films. Acta Materialia, 2019,165:615-625.
DOI
URL
PMID
|
[9] |
CHANG K, TO BABEN M, MUSIC D , et al. Estimation of the activation energy for surface diffusion during metastable phase formation. Acta Materialia, 2015,98:135-140.
DOI
URL
|
[10] |
JOUBERT D, KRESSE G . From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999,59(3):1758-1775.
DOI
URL
PMID
|
[11] |
BURKE K, ERNZERHOF M, PERDEW J P . Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865-3868.
DOI
URL
PMID
|
[12] |
DINSDALE A T . SGTE data for pure elements. Calphad, 1991,15(4):317-425.
DOI
URL
PMID
|
[13] |
REDLICH O, KISTER A T . Thermodynamics of nonelectrolyte solutions-xyt relations in a binary system. Industrial & Engineering Chemistry, 1948,40(2):341-345.
DOI
URL
PMID
|
[14] |
CHANG K, DU Y, SUN W , et al. Thermodynamic assessment of the V-Zn system supported by key experiments and first-principles calculations. Calphad, 2010,34(1):75-80.
DOI
URL
|
[15] |
CHEN L, ZHANG Z, HUANG Y ,et al. Thermodynamic description of the Fe-Cu-C system. Calphad, 2019,64:225-235.
DOI
URL
PMID
|
[16] |
GORBACHEV I I, POPOV V V . Analysis of the solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: III. Solubility of carbides, nitrides, and carbonitrides in the Fe-Ti-C, Fe-Ti-N, and Fe-Ti-C-N systems. Physics of Metals & Metallography, 2009,108(5):484-495.
DOI
URL
PMID
|
[17] |
LUO W, JIN Z, LIU H ,et al. Thermodynamic assessment of the Au-Ti system. Calphad, 2001,25(1):19-26.
DOI
URL
|
[18] |
WANG C, GUO Y, YONG L , et al. Thermodynamic assessment of the Ti-Ir System. Journal of Phase Equilibria & Diffusion, 2014,35(3):269-275.
DOI
URL
PMID
|
[19] |
DENG Z, ZHAO D, HUANG Y , et al. Unpublished research. 2018.
|
[20] |
HÄMÄLÄINEN M, ISOMÄKI I . Thermodynamic evaluation of the C-Co-Zn system. Journal of Alloys and Compounds, 2005,392(1):220-224.
DOI
URL
PMID
|
[21] |
OKAMOTO H, MASSALSKI T B . The Au-C (Gold-Carbon) system. Bulletin of Alloy Phase Diagrams, 1984,5(4):378-379.
DOI
URL
PMID
|
[22] |
NADLER M R, KEMPTER C P . Some solidus temperatures in several metal-carbon systems. Journal of Physical Chemistry, 1960,64(10):1468-1471.
DOI
URL
|
[23] |
FASHANDI H, LAI C C, DAHLQVIST M , et al. Ti2Au2C and Ti3Au2C2 formed by solid state reaction of gold with Ti2AlC and Ti3AlC2. Chemical Communications, 2017,53(69):9554-9557.
DOI
URL
PMID
|