无机材料学报 ›› 2024, Vol. 39 ›› Issue (3): 233-258.DOI: 10.15541/jim20230386 CSTR: 32189.14.10.15541/jim20230386

• 综述 •    下一篇

化学气相沉积法制备智能窗用热致变色VO2薄膜的研究进展

鲍可1,2(), 李西军1,2,3()   

  1. 1.西湖大学 先进微纳加工与测试平台, 杭州 310024
    2.浙江省3D微纳加工和表征研究重点实验室, 杭州 310024
    3.西湖大学 芯片数字化生产技术研究中心, 杭州 310024
  • 收稿日期:2023-08-28 修回日期:2023-09-29 出版日期:2024-03-20 网络出版日期:2023-11-28
  • 通讯作者: 李西军, 研究员. E-mail: lixijun@westlake.edu.cn
  • 作者简介:鲍可(1984-), 女, 博士. E-mail: baoke@westlake.edu.cn
  • 基金资助:
    西湖大学微纳平台建设专项经费(201046011801)

Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications

BAO Ke1,2(), LI Xijun1,2,3()   

  1. 1. Westlake Center for Micro/Nano Fabrication, Westlake University, Hangzhou 310024, China
    2. Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Hangzhou 310024, China
    3. Research Center for Digitalized Manufacturing Technology of Integrated Circuits, Westlake University, Hangzhou 310024, China
  • Received:2023-08-28 Revised:2023-09-29 Published:2024-03-20 Online:2023-11-28
  • Contact: LI Xijun, professor. E-mail: lixijun@westlake.edu.cn
  • About author:BAO Ke (1984-), female, PhD. E-mail: baoke@westlake.edu.cn
  • Supported by:
    Operation Fund of Westlake Center for Micro/Nano Fabrication(201046011801)

摘要:

热致变色智能窗是通过在玻璃上沉积温度刺激响应型材料, 实现根据环境温度调控窗户玻璃的太阳光透过率, 减少建筑物能耗的节能窗户。二氧化钒(VO2)是一种典型的热致相变材料, 在~68 ℃发生金属-绝缘体相变, 相变前后伴随光学性能的显著变化, 在智能窗等多个领域有潜在的技术应用。然而, 当前VO2基热致变色智能窗的应用仍存在着相变温度(τc)偏高、可见光透过率(Tlum)低和太阳能调节效率(ΔTsol)不足等问题, 无法满足实际建筑节能的需求。为了解决这些问题, 研究人员开展了广泛而深入的工作。化学气相沉积法(Chemical vapor deposition, CVD)能够以合理的成本生产高质量、大面积的VO2薄膜, 受到研究者青睐。本文总结了近年来利用CVD技术制备VO2薄膜的研究进展, 系统介绍常压化学气相沉积、气溶胶辅助化学气相沉积、低压化学气相沉积、金属有机物化学气相沉积、原子层沉积和等离子体增强化学气相沉积等CVD工艺, 分析了反应物种类及比例、反应温度、压力、载体流量等因素对VO2薄膜质量的影响, 并结合元素掺杂、纳米复合薄膜、多层膜结构等对VO2薄膜的性能调控与优化进行总结, 最后对未来等离子体增强化学气相沉积制备VO2薄膜的研究前景做出展望。

关键词: 二氧化钒, 热致变色, 智能窗, 化学气相沉积, 薄膜, 综述

Abstract:

Smart windows have gained tremendous attention because of their ability to dynamically modulate the solar radiation to minimize energy consumption and improve indoor living comfort. Vanadium dioxide (VO2) is one of the most attractive thermochromic materials for energy-saving smart windows due to its reversible metal-to-insulator transition at a critical temperature of ~68 ℃ and accompanying great change of its optical transmittance. However, VO2 itself has a couple of significant limitations as a smart window material: high phase transition temperature (τc), low luminous transmittance (Tlum) and insufficient solar energy modulation ability (ΔTsol). Several methods have been used to grow VO2 thin films with improved properties to meet the specific requirements for smart windows applications. The phase transition temperature (τc) should be reduced to near room temperature, in the meantime luminous transmittance (Tlum) and solar energy modulation ability (ΔTsol) should be high enough for the modulation of indoor temperature self-adapted to seasons and climate. The most common way to reduce τc is by doping. To enhance Tlum and ΔTsol, multilayer structures and/or nanocomposite film have been widely adopted. Chemical vapor deposition (CVD) is a promising technique to produce high quality and highly uniform VO2 thin film with different morphologies in large scale and at low costs. In this paper, various CVD techniques, such as atmospheric pressure chemical vapor deposition (APCVD), aerosol-assisted chemical vapor deposition (AACVD), low-pressure chemical vapor deposition (LPCVD), metal-organic chemical vapor deposition (MOCVD), atomic layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD), are examined with respect to their advantages for VO2 deposition, film quality and the strategies for film quality improvement. Finally, challenges and opportunities for further research and development of VO2 thermochromic films using PECVD technique are emphasized.

Key words: vanadium dioxide, thermochromism, smart window, chemical vapor deposition, thin film, review

中图分类号: