Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (6): 669-674.DOI: 10.15541/jim20200078
Special Issue: 结构陶瓷论文精选(二)
• RESEARCH PAPER • Previous Articles Next Articles
JI Xiaojuan1,2,YU Yueguang2(),LU Xiaoliang2
Received:
2020-02-18
Revised:
2020-03-01
Published:
2020-06-20
Online:
2020-03-05
Contact:
Supported by:
CLC Number:
JI Xiaojuan,YU Yueguang,LU Xiaoliang. Effects of Impurities on Properties of YSZ Thermal Barrier Coatings[J]. Journal of Inorganic Materials, 2020, 35(6): 669-674.
ZrO2 | HfO2 | TiO2 | SiO2 | MgO | Fe2O3 |
---|---|---|---|---|---|
90.28 | 1.55 | <0.01 | <0.01 | <0.01 | <0.01 |
Y2O3 | Al2O3 | CaO | Na2O | K2O | |
7.92 | 0.011 | <0.01 | <0.01 | <0.01 |
Table 1 Chemical composition of YSZ raw materials (wt%)
ZrO2 | HfO2 | TiO2 | SiO2 | MgO | Fe2O3 |
---|---|---|---|---|---|
90.28 | 1.55 | <0.01 | <0.01 | <0.01 | <0.01 |
Y2O3 | Al2O3 | CaO | Na2O | K2O | |
7.92 | 0.011 | <0.01 | <0.01 | <0.01 |
No. | SiO2 | No. | Al2O3 | No. | Fe2O3 | |||
---|---|---|---|---|---|---|---|---|
D | M | D | M | D | M | |||
HP | <0.01 | <0.01 | — | <0.01 | <0.01 | — | <0.01 | 0.0049 |
S1 | 0.02 | 0.013 | A1 | 0.02 | 0.014 | F1 | 0.02 | 0.0140 |
S2 | 0.06 | 0.038 | A2 | 0.06 | 0.030 | F2 | 0.06 | 0.0390 |
S3 | 0.10 | 0.064 | A3 | 0.10 | 0.051 | F3 | 0.10 | 0.0800 |
S4 | 0.16 | 0.110 | A4 | 0.15 | 0.079 | F4 | 0.16 | 0.1100 |
S5 | 0.20 | 0.150 | A5 | 0.20 | 0.120 | F5 | 0.20 | 0.1400 |
S6 | 0.36 | 0.260 | A6 | 0.35 | 0.230 | F6 | 0.36 | 0.3000 |
S7 | 0.50 | 0.320 | A7 | 0.50 | 0.300 | F7 | 0.50 | 0.3400 |
S8 | 0.66 | 0.430 | A8 | 0.65 | 0.380 | F8 | 0.66 | 0.4600 |
S9 | 0.80 | 0.550 | A9 | 0.80 | 0.450 | F9 | 0.80 | 0.5700 |
S10 | 1.00 | 0.620 | A10 | 1.00 | 0.640 | F10 | 1.00 | 0.5900 |
Table 2 Design composition (D) of YSZ powders and measured composition (M) of YSZ coatings (wt%)
No. | SiO2 | No. | Al2O3 | No. | Fe2O3 | |||
---|---|---|---|---|---|---|---|---|
D | M | D | M | D | M | |||
HP | <0.01 | <0.01 | — | <0.01 | <0.01 | — | <0.01 | 0.0049 |
S1 | 0.02 | 0.013 | A1 | 0.02 | 0.014 | F1 | 0.02 | 0.0140 |
S2 | 0.06 | 0.038 | A2 | 0.06 | 0.030 | F2 | 0.06 | 0.0390 |
S3 | 0.10 | 0.064 | A3 | 0.10 | 0.051 | F3 | 0.10 | 0.0800 |
S4 | 0.16 | 0.110 | A4 | 0.15 | 0.079 | F4 | 0.16 | 0.1100 |
S5 | 0.20 | 0.150 | A5 | 0.20 | 0.120 | F5 | 0.20 | 0.1400 |
S6 | 0.36 | 0.260 | A6 | 0.35 | 0.230 | F6 | 0.36 | 0.3000 |
S7 | 0.50 | 0.320 | A7 | 0.50 | 0.300 | F7 | 0.50 | 0.3400 |
S8 | 0.66 | 0.430 | A8 | 0.65 | 0.380 | F8 | 0.66 | 0.4600 |
S9 | 0.80 | 0.550 | A9 | 0.80 | 0.450 | F9 | 0.80 | 0.5700 |
S10 | 1.00 | 0.620 | A10 | 1.00 | 0.640 | F10 | 1.00 | 0.5900 |
Coal oil /(L·h-1) | O2 /(L·min-1) | Ar (Carrier gas) /(L·min-1) | Powder feeding rate/(g·min-1) | Distance/ mm |
---|---|---|---|---|
26 | 900 | 8 | 75 | 380 |
Table 3 Parameters of HVOF process
Coal oil /(L·h-1) | O2 /(L·min-1) | Ar (Carrier gas) /(L·min-1) | Powder feeding rate/(g·min-1) | Distance/ mm |
---|---|---|---|---|
26 | 900 | 8 | 75 | 380 |
Current/A | Voltage/V | Power/kW | Distance/mm |
---|---|---|---|
620 | 76 | 47 | 100 |
Ar/(L·min-1) | H2/(L·min-1) | Ar(Carrier gas)/ (L·min-1) | Powder feeding rate/(g·min-1) |
38 | 13 | 4.5 | 30 |
Table 4 Parameters of APS process
Current/A | Voltage/V | Power/kW | Distance/mm |
---|---|---|---|
620 | 76 | 47 | 100 |
Ar/(L·min-1) | H2/(L·min-1) | Ar(Carrier gas)/ (L·min-1) | Powder feeding rate/(g·min-1) |
38 | 13 | 4.5 | 30 |
[1] |
DAROLIA R . Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. International Materials Reviews, 2013,58(6):315-348.
DOI URL |
[2] | CURRY N, MARKOCSAN N, LI X H , et al. Next generation thermal barrier coatings for the gas turbine industry. Journal of Thermal Spray Technology, 2011,20(1/2):108-115. |
[3] | STӦVER D, PRACHT G, LEHMANN H , et al. New material concepts for the next generation of plasma-sprayed thermal barrier coatings. Journal of Thermal Spray Technology, 2004,13(1):76-83. |
[4] | XUE Z L, GUO H B, GONG S K , et al. Novel ceramic materials for thermal barrier coatings. Journal of Aeronautical Materials, 2018,38(2):10-20. |
[5] | CURRY N, JANIKOWSKI W, PALA Z , et al. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings. Journal of Thermal Spray Technology, 2014,23(1/2):160-169. |
[6] | LYU G, CHOI B G, LU Z , et al. Effect of thermal cycling frequency on the durability of Yb-Gd-Y-based thermal barrier coatings. Surface & Coatings Technology, 2019,364:187-195. |
[7] | GORAL M, KOTOWSKI S, NOWOTNIK A , et al. PS-PVD deposition of thermal barrier coatings. Surface & Coatings Technology, 2013,237:51-55. |
[8] | ŁATKA L . Thermal barrier coatings manufactured by suspension plasma spraying- a review. Advances in Materials Science, 2018,18(3):95-117. |
[9] | JONNALAGADDA K P, ERIKSSON R, LI X H , et al. Thermal barrier coatings: life model development and validation. Surface & Coatings Technology, 2019,362:293-301. |
[10] | PARK H M, JUN S H, LYU G , et al. Thermal durability of thermal barrier coatings in furnace cyclic thermal fatigue test: effects of purity and monoclinic phase in feedstock powder. Journal of the Korean Ceramic Society, 2018,55(6):608-617. |
[11] | KARLSSON A M . Modeling failures of thermal barrier coatings. Key Engineering Materials, 2007,333:155-166. |
[12] | HUA J J, ZHANG L P, LIU Z W , et al. Progress of research on the failure mechanism of thermal barrier coatings. Journal of Inorganic Materials, 2012,27(7):681-686. |
[13] | MATSUI K . Sintering kinetics at constant rates of heating: mechanism of silica-enhanced sintering of fine zirconia powder. Journal of the American Ceramic Society, 2008,91(8):2534-2539. |
[14] | TSIPAS S A, GOLOSNOY I O, DAMANI R , et al. The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system. Journal of Thermal Spray Technology, 2004,13(3):370-376. |
[15] | CHOI S R, ZHU D M, MILLER R A . Effect of sintering on mechanical properties of plasma-sprayed zirconia-based thermal barrier coatings. Journal of the American Ceramic Society, 2005,88(10):2859-2867. |
[16] | VAβEN R, CZECH N, MALLÉNER W , et al. Influence of impurity content and porosity of plasma-sprayed yttria-stabilized zirconia layers on the sintering behaviour. Surface and Coatings Technology, 2001,141:135-140. |
[17] | PAUL S, CIPITRIA A, GOLOSNOY I O , et al. Effects of impurity content on the sintering characteristics of plasma-sprayed zirconia. Journal of Thermal Spray Technology, 2007,16(5/6):798-803. |
[18] |
XIE L, DORFMAN M R, CIPITRIA A , et al. Properties and performance of high-purity thermal barrier coatings. Journal of Thermal Spray Technology, 2007,16(5/6):804-808.
DOI URL |
[19] | HELMINIAK M A, YANAR N M, PETTIT F S , et al. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings. Surface & Coatings Technology, 2009,204:793-796. |
[20] | MARKOCSAN N, NYLÉN P, WIGREN J, et al. Low thermal conductivity coatings for gas turbine applications. Journal of Thermal Spray Technology, 2007,16(4):498-505. |
[21] | ZHU D M, MILLER R A . Development of advanced low conductivity thermal barrier coatings. International Journal of Applied Ceramic Technology, 2004,1(1):86-94. |
[22] | WANG L, WANG Y, SUN X G , et al. Influence of pores on the thermal insulation behavior of thermal barrier coatings prepared by atmospheric plasma spray. Materials and Design, 2011,32:36-47. |
[23] | ZHU D M, MILLER R A . Thermal conductivity and elastic modulus evolution of thermal barrier coatings under high heat flux conditions. Journal of Thermal Spray Technology, 2000,9(2):175-180. |
[24] | ZHU D M, MILLER R A, NAGARAJ B A , et al. Thermal conductivity of EB-PVD thermal barrier coatings evaluated by a steady- state laser heat flux technique. Surface and Coatings Technology, 2001,138:1-8. |
[25] | LI Y J, YU Y G, JI X J , et al. Effects of Al2O3 content on properties of YSZ thermal barrier coatings. Thermal Spray Technology, 2018,10(1):61-67. |
[26] | GREMILLARD L, EPICIER T, CHEVALIER J , et al. Microstructural stucy of silica-doped zirconia ceramics. Acta Materialia, 2000,48:4647-4652. |
[27] | HODGSON S N B, CAWLEY J, CLUBLEY M . The role of SiO2 impurities in the microstructure and properties of Y-TZP. Journal of Materials Processing Technology, 1999,86:139-145. |
[28] | MATSUI K, YOSHIDA H, IKUHARA Y . Phase-transformation and grain-growth kinetics in yttria-stabilized tetragonal zirconia polycrystal doped with a small amount of alumina. Journal of the European Ceramic Society, 2010,30:1679-1690. |
[29] | SAKKA Y, ISHII T, SUZUKI T S , et al. Fabrication of high-strain rate superplastic yttria-doped zirconia polycrystals by adding manganese and aluminum oxides. Journal of the European Ceramic Society, 2004,24:449-453. |
[30] |
WU S X, BROOK R J . Kinetics of densification in stabilized zirconia. Solid State Ionics, 1984,14:123-130.
DOI URL |
[1] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[2] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[3] | ZHU Jiatong, LOU Zhihao, ZHANG Ping, ZHAO Jia, MENG Xuanyu, XU Jie, GAO Feng. Preparation and Thermal Properties of Rare Earth Tantalates (RETaO4) High-Entropy Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 411-417. |
[4] | SANG Weiwei, ZHANG Hongsong, CHEN Huahui, WEN Bin, LI Xinchun. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic [J]. Journal of Inorganic Materials, 2021, 36(4): 405-410. |
[5] | MU Tinghai, XU Wentao, LING Junrong, DONG Tianwen, QIN Zixuan, ZHOU Youfu. Microstructure and Properties of ZrO2-AlN Composite Ceramics by Microwave Sintering [J]. Journal of Inorganic Materials, 2021, 36(11): 1231-1236. |
[6] | FAN Wenqi, SONG Xuemei, HUANG Yiling, CHANG Chengkang. Structure Change and Phase Transition Distribution of YSZ Coating Caused by CMAS Corrosion [J]. Journal of Inorganic Materials, 2021, 36(10): 1059-1066. |
[7] | GAO Jiming, YANG Yang, LEI Ting, WANG Jin, LIU Jie, ZHANG Limin. Synthesis and Characterization of SiC@SiO2/BN/PI Composites by in-situ Polymerization [J]. Journal of Inorganic Materials, 2021, 36(1): 36-42. |
[8] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
[9] | ZHOU Xingyuan, LIU Wei, ZHANG Cheng, HUA Fuqiang, ZHANG Min, SU Xianli, TANG Xinfeng. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions [J]. Journal of Inorganic Materials, 2020, 35(12): 1373-1379. |
[10] | LIU Fengqi, FENG Jian, JIANG Yonggang, LI Liangjun. Preparation and Application of Boron Nitride Aerogels [J]. Journal of Inorganic Materials, 2020, 35(11): 1193-1202. |
[11] | HE Duan-Peng,GAO Hong,ZHANG Jing-Jing,WU Jie,LIU Bo-Tian,WANG Xiang-Ke. Simulation and Experimental Verification of Thermal Property for Aluminum Nitrides and Copper Clad Laminates under Space Thermal Environment [J]. Journal of Inorganic Materials, 2019, 34(9): 947-952. |
[12] | FAN Jia-Feng,ZHANG Xiao-Feng,ZHOU Ke-Song,LIU Min,DENG Chang-Guang,DENG Chun-Ming,NIU Shao-Peng,DENG Zi-Qian. Influence of Al-modification on CMAS Corrosion Resistance of PS-PVD 7YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2019, 34(9): 938-946. |
[13] | Bo-Le MA, Wen MA, Wei HUANG, Yu BAI, Rui-Ling JIA, Hong-Ying DONG. Thermophysical Property of Single-phase Strontium Zirconate Co-doped with Double Rare-earth Oxides as a Thermal Barrier Coating Material [J]. Journal of Inorganic Materials, 2019, 34(4): 394-400. |
[14] | Ren-Jie GENG, Song-Feng E, Chao-Wei LI, Tao-Tao LI, Jun WU, Ya-Gang YAO. High Crystallinity Boron Nitride Nanosheets: Preparation and the Property of BNNSs/Polyvinyl Alcohol Composite Film [J]. Journal of Inorganic Materials, 2019, 34(4): 401-406. |
[15] | LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 247-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||