Journal of Inorganic Materials ›› 2018, Vol. 33 ›› Issue (2): 138-146.DOI: 10.15541/jim20170363
• Orginal Article • Previous Articles Next Articles
FAN Yu-Chi1, WANG Lian-Jun2, JIANG Wan1,2
Received:
2017-08-07
Revised:
2017-09-23
Published:
2018-02-26
Online:
2018-01-26
Supported by:
CLC Number:
FAN Yu-Chi, WANG Lian-Jun, JIANG Wan. Graphene Based Oxide Ceramic Composites with High Mechanical and Functional Performance: from Preparation to Property[J]. Journal of Inorganic Materials, 2018, 33(2): 138-146.
Fig. 4 Schematic illustration showing 2D graphene can retard the coarsening of grain most effectively[21] (a), (b), (c) show the situation for nano-particle, 1D inclusion and 2D inclusion, respectively
Fig. 5 Graphene prohibits grain boundary reaching dynamic balance[21] The yellow and white arrows indicate grain boundaries with and without graphene, respectively
Fig. 6 Stain-stress plots of monolithic Al2O3 ceramic (black), FLG/Al2O3 composite before (red) and after (blue) burn-off for 20 h during four-point bending test, respectively[22]
Matrix | Raw material of graphene* | Mixing method | Percolation threshold | Maximum electrical conductivity | Reference |
---|---|---|---|---|---|
Al2O3 | GO | Heteroaggregation | 0.38vol% | 1038.15 S•m-1 for 2.35vol% | [16] |
Al2O3 | GO | Heteroaggregation | 0.22wt% | 11.1 S•m-1 for 0.45wt% | [31] |
Al2O3 | G | Stirring + Ball milling | 7.1vol% | 20.1 S•m-1 for 15vol% | [32] |
Al2O3 | G | Planetary ball milling | <0.5vol% | 123.3 S•m-1 for 2vol% | [33] |
Al2O3 | GN | Attrition ball milling | 3vol% | 103 S•m-1 for 15vol% | [34] |
Al2O3 | EG | Planetary ball milling | 3vol% | 5709 S•m-1 for 15vol% | [8] |
Al2O3 | EG | Attrition ball milling | 4.7-5.7vol% | 9.6×10-2 S•m-1 for 9.4vol% | [35] |
YSZ | GO | Sonication | 2.5vol% | 1.2×104 S•m-1 for 4.1vol% | [36] |
SiO2 | GO | Heteroaggregation | <0.58wt% | 10-2 S•m-1 for 0.98wt% | [37] |
ZrO2 | GN | Planetary ball milling | <1wt% | 98 S•m-1 for 3wt% | [38] |
Table 1 Comparison of some reported graphene/oxide ceramic composites
Matrix | Raw material of graphene* | Mixing method | Percolation threshold | Maximum electrical conductivity | Reference |
---|---|---|---|---|---|
Al2O3 | GO | Heteroaggregation | 0.38vol% | 1038.15 S•m-1 for 2.35vol% | [16] |
Al2O3 | GO | Heteroaggregation | 0.22wt% | 11.1 S•m-1 for 0.45wt% | [31] |
Al2O3 | G | Stirring + Ball milling | 7.1vol% | 20.1 S•m-1 for 15vol% | [32] |
Al2O3 | G | Planetary ball milling | <0.5vol% | 123.3 S•m-1 for 2vol% | [33] |
Al2O3 | GN | Attrition ball milling | 3vol% | 103 S•m-1 for 15vol% | [34] |
Al2O3 | EG | Planetary ball milling | 3vol% | 5709 S•m-1 for 15vol% | [8] |
Al2O3 | EG | Attrition ball milling | 4.7-5.7vol% | 9.6×10-2 S•m-1 for 9.4vol% | [35] |
YSZ | GO | Sonication | 2.5vol% | 1.2×104 S•m-1 for 4.1vol% | [36] |
SiO2 | GO | Heteroaggregation | <0.58wt% | 10-2 S•m-1 for 0.98wt% | [37] |
ZrO2 | GN | Planetary ball milling | <1wt% | 98 S•m-1 for 3wt% | [38] |
Fig. 7 (a) Electrical conductivity of graphene/Al2O3 composites as a function of filler volume fraction; (b) Hall coefficient plotted against filler volume fraction[16]
[1] | ZAPATA-SOLVAS E, GOMEZ-GARCIA D, DOMINGUEZ- RODRIGUEZ A.Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites.J. Eur. Ceram. Soc, 2012, 32(12): 3001-3020. |
[2] | LEE C, WEI X D, KYSAR J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene.Science, 2008, 321(5887): 385-388. |
[3] | GEIM A K, NOVOSELOV K S.The rise of graphene.Nat. Mater., 2007, 6(3): 183-191. |
[4] | HUANG X, QI X Y, BOEY F, et al.Graphene-based composites.Chem. Soc. Rev., 2012, 41(2): 666-686. |
[5] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al.Electric field effect in atomically thin carbon films.Science, 2004, 306(5696): 666-669. |
[6] | BURMEISTER C F, KWADE A.Process engineering with planetary ball mills.Chem. Soc. Rev., 2013, 42(18): 7660-7667. |
[7] | HERNANDEZ Y, NICOLOSI V, LOTYA M, et al.High-yield production of graphene by liquid-phase exfoliation of graphite.Nat. Nanotechnol., 2008, 3(9): 563-568. |
[8] | FAN Y C, WANG L J, LI J L, et al.Preparation and electrical properties of graphene nanosheet/Al2O3 composites.Carbon, 2010, 48(6): 1743-1749. |
[9] | LIU X, FAN Y C, LI J L, et al.Preparation and mechanical properties of graphene nanosheet reinforced alumina composites.Adv. Eng. Mater., 2015, 17(1): 28-35. |
[10] | HUMMERS W S, OFFEMAN R E.Preparation of graphitic oxide.J. Am. Chem. Soc., 1958, 80(6): 1339. |
[11] | MARCANO D C, KOSYNKIN D V, BERLIN J M, et al.Improved synthesis of graphene oxide.ACS Nano, 2010, 4(8): 4806-4814. |
[12] | CHEN J, YAO B W, LI C, et al.An improved Hummers method for eco-friendly synthesis of graphene oxide.Carbon, 2013, 64: 225-229. |
[13] | YU H T, ZHANG B W, BULIN C K, et al.High-efficient synthesis of graphene oxide based on improved hummers method.Sci. Rep.-Uk, 2016, 6: 36143. |
[14] | YANG D, VELAMAKANNI A, BOZOKLU G, et al.Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy.Carbon, 2009, 47(1): 145-152. |
[15] | SUN J, GAO L.Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation.Carbon, 2003, 41(5): 1063-1068. |
[16] | FAN Y C, JIANG W, KAWASAKI A.Highly conductive few-layer graphene/Al2O3 nanocomposites with tunable charge carrier type.Adv. Funct. Mater., 2012, 22(18): 3882-3889. |
[17] | FENG X P, FAN Y C, NOMURA N, et al.Graphene promoted oxygen vacancies in perovskite for enhanced thermoelectric properties.Carbon, 2017, 112: 169-176. |
[18] | RICE R W, WU C C, BORCHELT F.Hardness grain-size relations in ceramics.J. Am. Ceram. Soc., 1994, 77(10): 2539-2553. |
[19] | ZHANG S C, FAHRENHOLTZ W G, HILMAS G E, et al.Pressureless sintering of carbon nanotube-Al2O3 composites.J. Eur. Ceram. Soc., 2010, 30(6): 1373-1380. |
[20] | INAM F, VO T, BHAT B R.Structural stability studies of graphene in sintered ceramic nanocomposites.Ceram. Int., 2014, 40(PB): 16227-16233. |
[21] | FAN Y C, ESTILI M, IGARASHI G, et al.The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites.J. Eur. Ceram. Soc., 2014, 34(2): 443-451. |
[22] | LIU X, LI J L, YU X W, et al.Graphene nanosheet/titanium carbide composites of a fine-grained structure and improved mechanical properties.Ceram. Int., 2016, 42(1): 165-172. |
[23] | FAN Y C, IGARASHI G, JIANG W, et al.Highly strain tolerant and tough ceramic composite by incorporation of graphene.Carbon, 2015, 90: 274-283. |
[24] | LIU J, YAN H X, JIANG K.Mechanical properties of graphene platelet-reinforced alumina ceramic composites.Ceram. Int., 2013, 39(6): 6215-6221. |
[25] | KIM H J, LEE S M, OH Y S, et al.Unoxidized graphene/alumina nanocomposite: fracture- and wear-resistance effects of graphene on alumina matrix.Sci. Rep.-Uk., 2014, 4: 5176. |
[26] | LIU J, YANG Y, HASSANIN H, et al.Graphene-alumina nanocomposites with improved mechanical properties for biomedical applications.ACS Appl. Mater. Inter., 2016, 8(4): 2607-2616. |
[27] | DEL RIO F, BOADO M G, RAMA A, et al.A comparative study on different aqueous-phase graphite exfoliation methods for few-layer graphene production and its application in alumina matrix composites.J. Eur. Ceram. Soc., 2017, 37(12): 3681-3693. |
[28] | CHEN C, PAN L M, LI X Y, et al.Mechanical and thermal properties of graphene nanosheets/magnesia composites.Ceram. Int., 2017, 43(13): 10377-10385. |
[29] | KLEBERT S, BALAZSI C, BALAZSI K, et al.Spark plasma sintering of graphene reinforced hydroxyapatite composites.Ceram. Int., 2015, 41(3): 3647-3652. |
[30] | RUL S, LEFèVRE-SCHLICK F, CAPRIA E, et al. Percolation of single-walled carbon nanotubes in ceramic matrix nanocomposites.Acta Materialia, 2004, 52(4): 1061-1067. |
[31] | CENTENO A, ROCHA V G, ALONSO B, et al.Graphene for tough and electroconductive alumina ceramics.J. Eur. Ceram. Soc., 2013, 33(15/16): 3201-3210. |
[32] | CELIK Y, CELIK A, FLAHAUT E, et al.Anisotropic mechanical and functional properties of graphene-based alumina matrix nanocomposites.J. Eur. Ceram. Soc., 2016, 36(8): 2075-2086. |
[33] | QING Y C, WEN Q L, LUO F, et al.Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band.J. Mater. Chem. C, 2016, 4(22): 4853-4862. |
[34] | SUNG J W, KIM K H, KANG M C.Effects of graphene nanoplatelet contents on material and machining properties of GNP-dispersed Al2O3 ceramics for micro-electric discharge machining.Int. J. Pr. Eng. Man.-Gt., 2016, 3(3): 247-252. |
[35] | LEE E, CHOI K B, LEE S M, et al.A scalable and facile synthesis of alumina/exfoliated graphite composites by attrition milling.RSC Adv., 2015, 5(113): 93267-93273. |
[36] | SHIN J H, HONG S H.Fabrication and properties of reduced graphene oxide reinforced yttria-stabilized zirconia composite ceramics.J. Eur. Ceram. Soc., 2014, 34(5): 1297-1302. |
[37] | CHEN B B, LIU X, ZHAO X Q, et al.Preparation and properties of reduced graphene oxide/fused silica composites.Carbon, 2014, 77: 66-75. |
[38] | KWON S M, LEE S J, SHON I J.Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high- frequency induction heating.Ceram. Int., 2015, 41(1): 835-842. |
[39] | FAN Y C, KANG L J, ZHOU W W, et al.Control of doping by matrix in few-layer graphene/metal oxide composites with highly enhanced electrical conductivity.Carbon, 2015, 81: 83-90. |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | ZHAO Zhihan, GUO Peng, WEI Jing, CUI Li, LIU Shanze, ZHANG Wenlong, CHEN Rende, WANG Aiying. Ti Doped Diamond Like Carbon Films: Piezoresistive Properties and Carrier Transport Behavior [J]. Journal of Inorganic Materials, 2024, 39(8): 879-886. |
[6] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[7] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[8] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[9] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[10] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[11] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[12] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[13] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[14] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[15] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||