Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (6): 726-732.DOI: 10.15541/jim20230471
Special Issue: 【结构材料】超高温结构陶瓷(202506); 【结构材料】陶瓷基复合材料(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
SU Yi1(), SHI Yangfan1, JIA Chenglan1, CHI Pengtao2, GAO Yang2, MA Qingsong1, CHEN Sian1(
)
Received:
2023-10-13
Revised:
2023-12-05
Published:
2024-06-20
Online:
2024-03-05
Contact:
CHEN Sian, associate professor. E-mail: chensian07@nudt.edu.cnAbout author:
SU Yi (2000-), male, Master candidate. E-mail: suyi@nudt.edu.cn
Supported by:
CLC Number:
SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis[J]. Journal of Inorganic Materials, 2024, 39(6): 726-732.
Sample | Density/ (g·cm-3) | Open porosity/% | Fiber/% (in vol) | HfC/% (in vol) | SiC/% (in vol) |
---|---|---|---|---|---|
S-15 | 2.20 | 5.4 | 43.4 | 13.1 | 32.6 |
S-20 | 2.37 | 4.3 | 40.8 | 16.5 | 31.2 |
S-25 | 2.58 | 5.6 | 37.1 | 20.3 | 30.9 |
Table 1 Densities, open porosities and compositions of C/HfC-SiC composites
Sample | Density/ (g·cm-3) | Open porosity/% | Fiber/% (in vol) | HfC/% (in vol) | SiC/% (in vol) |
---|---|---|---|---|---|
S-15 | 2.20 | 5.4 | 43.4 | 13.1 | 32.6 |
S-20 | 2.37 | 4.3 | 40.8 | 16.5 | 31.2 |
S-25 | 2.58 | 5.6 | 37.1 | 20.3 | 30.9 |
Sample | Bending strength/MPa | Bending modulus/GPa | Tensile strength/MPa | Tensile modulus/GPa | Fracture toughness/(MPa·m1/2) |
---|---|---|---|---|---|
S-15 | 333±18 | 56.0±2.6 | 152±16 | 62.0±4.5 | 12.0±3.2 |
S-20 | 295±31 | 50.0±1.4 | 145±5 | 60.0±1.8 | 11.0±1.7 |
S-25 | 307±9 | 53.4±1.9 | 147±16 | 62.5±5.1 | 9.3±1.8 |
Table 2 Mechanical properties of C/HfC-SiC composites
Sample | Bending strength/MPa | Bending modulus/GPa | Tensile strength/MPa | Tensile modulus/GPa | Fracture toughness/(MPa·m1/2) |
---|---|---|---|---|---|
S-15 | 333±18 | 56.0±2.6 | 152±16 | 62.0±4.5 | 12.0±3.2 |
S-20 | 295±31 | 50.0±1.4 | 145±5 | 60.0±1.8 | 11.0±1.7 |
S-25 | 307±9 | 53.4±1.9 | 147±16 | 62.5±5.1 | 9.3±1.8 |
[1] | LI Q G, DONG S M, WANG Z, et al. Fabrication and properties of 3D Cf/ZrC-SiC composites by the vapor silicon infiltration process. Ceramics International, 2013, 39(4):4723. |
[2] | YAN C L, LIU R J, CAO Y B, et al. Fabrication and properties of PIP 3D Cf/ZrC-SiC composites. Materials Science and Engineering: A, 2014, 591: 105. |
[3] | LI H J, HE Q C, WANG C C, et al. Effects of precursor feeding rate on the microstructure and ablation resistance of gradient C/C-ZrC-SiC composites prepared by chemical liquid-vapor deposition. Vacuum, 2019, 164: 265. |
[4] | WANG D, WANG Y J, RAO J C, et al. Influence of reactive melt infiltration parameters on microstructure and properties of low temperature derived Cf/ZrC composites. Materials Science and Engineering: A, 2013, 568: 25. |
[5] | OUYANG H B, LI G B, LI C Y, et al. Microstructure and ablation properties of C/C-Zr-Si-O composites prepared by carbothermal reduction of hydrothermal co-deposited oxides. Materials & Design, 2018, 159: 145. |
[6] | MA X, CHEN S A, MEI M, et al. Influence of total pressure on the microstructures and growth mechanism of ZrC coatings prepared by chemical vapor deposition from the Zr-Br2-C3H6-H2-Ar system. Ceramics International, 2017, 43(4):3501. |
[7] | CAI F Y, NI D W, BAO W C, et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites. Composites Part B: Engineering, 2022, 243(15):110177. |
[8] | XU J, GUO L J, KONG J G, et al. The mechanical properties of C/C-ZrC-SiC composites after laser ablation. Journal of the European Ceramic Society, 2023, 43(15):6732. |
[9] | MA J C, KUO S J, YANG S B, et al. Ablation performance of C/C-ZrC-SiC composites with in-situ YSi2-doped ZrC-SiC-ZrSi2 coating under oxyacetylene torch. Corrosion Science, 2022, 209: 110802. |
[10] | LIU Y C, XIA Z X, MA L K, et al. Microstructure and ablation mechanism of C/C-ZrC-SiC composite in the solid scramjet plumes environment. Materials Characterization, 2023, 198: 112754. |
[11] | ZHU Y, WANG S, CHEN H, et al. Microstructure and mechanical properties of Cf/ZrC composites fabricated by reactive melt infiltration at relatively low temperature. Ceramics International, 2013, 39: 9085. |
[12] | CHEN S A, LI G D, HU H F, et al. Microstructure and properties of ablative C/ZrC-SiC composites prepared by reactive melt infiltration of zirconium and vapour silicon infiltration. Ceramics International, 2017, 43(3):3439. |
[13] | ZHAO X, WANG Y G, DUAN L Y, et al. Improved ablation resistance of C/SiC-ZrB2 composites via polymer precursor impregnation and pyrolysis. Ceramics International, 2017, 43(15):12480. |
[14] | ZHANG D Y, HU P, DONG S, et al. Oxidation behavior and ablation mechanism of Cf/ZrB2-SiC composite fabricated by vibration- assisted slurry impregnation combined with low-temperature hot pressing. Corrosion Science, 2019, 161: 108181. |
[15] | SIMONENKOA E P, SEVAST’YANOVA D V, SIMONEKO N P, et al. Promising ultra-high-temperature ceramic materials for aerospace applications. Russian Journal of Inorganic Chemistry, 2013, 58(14):1669. |
[16] | PAUL A, JAYASEELAN D D, VENUGOPAL S, et al. UHTC composites for hypersonic applications. American Ceramic Society Bulletin, 2012, 91(1):22. |
[17] | SAYIR A. Carbon fiber reinforced hafnium carbide composite. Journal of Materials Science, 2004, 39(19):5995. |
[18] | KOU S J, MA J C, MA Y J, et al. Microstructure and flexural strength of C/HfC-ZrC-SiC composites prepared by reactive melt infiltration method. Journal of the European Ceramic Society, 2023, 43(5): 1864. |
[19] | ZHANG J P, XIN Y P, WANG R N, et al. Ablation behavior of C/C-HfC-SiC composites prepared by joint route of precursor infiltration and pyrolysis and gaseous silicon infiltration. Chinese Journal of Aeronautics, 2023, 36(9):426. |
[20] | YAN C L, LIU R J, ZHANG C R, et al. Zirconium carbide, hafnium carbide and their ternary carbide nano particles by an in situ polymerization route. RSC Advances, 2015, 5: 36520. |
[21] | TANG Z X, YI M Z, XIANG Q L, et al. Mechanical and ablation properties of a C/C-HfB2-SiC composite prepared by high-solid- loading slurry impregnation combined with precursor infiltration and pyrolysis. Journal of the European Ceramic Society, 2021, 41(13):6160. |
[22] | 简科, 林红吉, 陈朝辉, 等. 先驱体转化法制备低成本碳纤维增强陶瓷基复合材料研究. 宇航材料工艺, 2004, 5: 6. |
[23] | 简科, 陈朝辉, 马青松, 等. 裂解工艺对先驱体转化制备Cf/SiC材料结构与性能的影响. 复合材料学报, 2004, 21(5):57. |
[24] | LIU Y S, WAN J J, ZUO X Z, et al. Oxidation behavior of 2D C/SiC composites coated with multi-layer SiC/Si-B-C/SiC coating under wet oxygen atmosphere. Applied Surface Science, 2015, 353: 214. |
[25] | WANG G X, LU G Q, PEI B Y, et al. Oxidation mechanism of Si3N4-bonded SiC ceramics by CO, CO2 and steam. Journal of Materials Science, 1998, 33: 1309. |
[26] | SHIN D W, ARRÓYAVE R, LIU Z K. Thermodynamic modeling of the Hf-Si-O system. Calphad, 2006, 30(4):375. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[8] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[9] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[10] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[14] | LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 697-706. |
[15] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||