Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (6): 697-706.DOI: 10.15541/jim20230544
Special Issue: 【结构材料】高熵陶瓷(202506); 【结构材料】陶瓷基复合材料(202506)
• RESEARCH ARTICLE • Previous Articles Next Articles
LIU Guoang(), WANG Hailong(
), FANG Cheng(
), HUANG Feilong, YANG Huan
Received:
2023-11-28
Revised:
2024-01-27
Published:
2024-06-20
Online:
2024-01-31
Contact:
WANG Hailong, professor. E-mail: 119whl@zzu.edu.cn;About author:
LIU Guoang (2000-), male, Master candidate. E-mail: liuguoang2022@163.com
Supported by:
CLC Number:
LIU Guoang, WANG Hailong, FANG Cheng, HUANG Feilong, YANG Huan. Effect of B4C Content on Mechanical Properties and Oxidation Resistance of (Ti0.25Zr0.25Hf0.25Ta0.25)B2-B4C Ceramics[J]. Journal of Inorganic Materials, 2024, 39(6): 697-706.
Crystalline | HBC-0 | HBC-1 | HBC-2 | HBC-3 | |
---|---|---|---|---|---|
FWHM (2θ)/(°) | (101) | 0.187±0.002 | 0.186±0.002 | 0.194±0.002 | 0.199±0.002 |
(100) | 0.119±0.001 | 0.118±0.002 | 0.131±0.002 | 0.126±0.002 | |
(001) | 0.153±0.002 | 0.151±0.003 | 0.163±0.004 | 0.184±0.003 | |
Crystallinity/% | (101) | 68.51±0.55 | 70.30±0.80 | 70.75±0.85 | 68.93±0.81 |
(100) | 81.77±0.85 | 81.85±1.26 | 82.78±1.31 | 81.92±1.14 | |
(001) | 88.85±1.04 | 89.39±1.67 | 89.34±1.86 | 90.85±1.61 |
Table 1 FWHM and crystallinity of the corresponding diffraction peaks of different ceramic samples
Crystalline | HBC-0 | HBC-1 | HBC-2 | HBC-3 | |
---|---|---|---|---|---|
FWHM (2θ)/(°) | (101) | 0.187±0.002 | 0.186±0.002 | 0.194±0.002 | 0.199±0.002 |
(100) | 0.119±0.001 | 0.118±0.002 | 0.131±0.002 | 0.126±0.002 | |
(001) | 0.153±0.002 | 0.151±0.003 | 0.163±0.004 | 0.184±0.003 | |
Crystallinity/% | (101) | 68.51±0.55 | 70.30±0.80 | 70.75±0.85 | 68.93±0.81 |
(100) | 81.77±0.85 | 81.85±1.26 | 82.78±1.31 | 81.92±1.14 | |
(001) | 88.85±1.04 | 89.39±1.67 | 89.34±1.86 | 90.85±1.61 |
Sample | Theoretical density/(g·cm-3) | Bulk density/(g·cm-3) | Relative density/% | Porosity/% |
---|---|---|---|---|
HBC-0 | 8.59 | 8.07 | 94.0 | 6.0 |
HBC-1 | 8.03 | 7.66 | 95.4 | 4.6 |
HBC-2 | 7.78 | 7.50 | 96.4 | 3.6 |
HBC-3 | 7.54 | 7.40 | 98.1 | 1.9 |
Table 2 Relative density and porosity of different ceramic samples
Sample | Theoretical density/(g·cm-3) | Bulk density/(g·cm-3) | Relative density/% | Porosity/% |
---|---|---|---|---|
HBC-0 | 8.59 | 8.07 | 94.0 | 6.0 |
HBC-1 | 8.03 | 7.66 | 95.4 | 4.6 |
HBC-2 | 7.78 | 7.50 | 96.4 | 3.6 |
HBC-3 | 7.54 | 7.40 | 98.1 | 1.9 |
Sample | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Vickers hardness/GPa |
---|---|---|---|
HBC-0 | 409.0±37.4 | 3.22±0.13 | 21.5±0.5 |
HBC-1 | 273.0±11.2 | 4.85±0.16 | 22.2±0.3 |
HBC-2 | 570.0±27.6 | 5.58±0.36 | 24.6±1.1 |
HBC-3 | 418.0±8.3 | 5.14±0.45 | 23.3±0.8 |
Table 3 Flexural strength, fracture toughness and hardness of different ceramic samples
Sample | Flexural strength/MPa | Fracture toughness/(MPa·m1/2) | Vickers hardness/GPa |
---|---|---|---|
HBC-0 | 409.0±37.4 | 3.22±0.13 | 21.5±0.5 |
HBC-1 | 273.0±11.2 | 4.85±0.16 | 22.2±0.3 |
HBC-2 | 570.0±27.6 | 5.58±0.36 | 24.6±1.1 |
HBC-3 | 418.0±8.3 | 5.14±0.45 | 23.3±0.8 |
[1] | FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Processing of dense high-entropy boride ceramics. Journal of the European Ceramic Society, 2020, 40(12):3815. |
[2] | MAYRHOFER P H, KIRNBAUER K, ERTELTHALER P, et al. High-entropy ceramic thin films; A case study on transition metal diborides. Scripta Materialia, 2018, 149: 93. |
[3] | XIANG H M, XING Y, DAI F Z, et al. High-entropy ceramics: present status, challenges, and a look forward. Journal of Advanced Ceramics, 2021, 10(3):385. |
[4] | ZHAO P B, ZHU J B, LI M L, et al. Theoretical and experimental investigations on the phase stability and fabrication of high-entropy monoborides. Journal of European Ceramic Society, 2023, 43(6):2320. |
[5] | ZHANG W M, DAI F Z, XIANG H M, et al. Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HE TMB2). Journal of Advanced Ceramics, 2021, 10(6):1299. |
[6] | BACKMAN L, GILD J, LUO J, et al. Part I: theoretical predictions of preferential oxidation in refractory high entropy materials. Acta Materialia, 2020, 197: 20. |
[7] | FENG L, FAHRENHOLTZ W G, BRENNER D W, et al. High- entropy ultra-high-temperature borides and carbides: a new class of materials for extreme environments. Annual Review of Materials Research, 2021, 51(1):165. |
[8] | STORR B, MOORE L, CHAKRABARTY K, et al. Properties of high entropy borides synthesized via microwave-induced plasma. APL Materials, 2022, 10(6):061109. |
[9] | ZHAO P B, ZHU J B, YANG K J, et al. Outstanding wear resistance of plasma sprayed high-entropy monoboride composite coating by inducing phase structural cooperative mechanism. Applied Surface Science, 2023, 616: 156516. |
[10] | GILD J, ZHANG Y, HARRINGTON T, et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Scientific Reports, 2016, 6: 37946. |
[11] | QIAO L J, LIU Y, GAO Y, et al. First-principles prediction, fabrication and characterization of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high- entropy borides. Ceramics International, 2022, 48(12):17234. |
[12] | TALLARITA G, LICHERI R, GARRONI S, et al. High-entropy transition metal diborides by reactive and non-reactive spark plasma sintering: a comparative investigation. Journal of the European Ceramic Society, 2019, 40(4):842. |
[13] | WUCHINA E, OPILA E, OPEKA M, et al. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. The Electrochemical Society Interface, 2007, 16(4):30. |
[14] | FAHRENHOLTZ W G, HILMAS G E, TALMY I, et al. Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 2007, 90(5):1347. |
[15] |
FENG L, FAHRENHOLTZ W G, HILMAS G E, et al. Two-step synthesis process for high-entropy diboride powders. Journal of the American Ceramic Society, 2020, 103(2):724.
DOI |
[16] | ZHANG Y, GUO W M, JIANG Z B, et al. Dense high-entropy boride ceramics with ultra-high hardness. Scripta Materialia, 2019, 164: 135. |
[17] | ZHANG Y, JIANG Z B, SUN S K, et al. Microstructure and mechanical properties of high-entropy borides derived from boro/ carbothermal reduction. Journal of European Ceramic Society, 2021, 39(13):3920. |
[18] | MA H B, LIU H L, ZHAO J, et al. Pressureless sintering, mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C. Journal of European Ceramic Society, 2015, 35(10):2699. |
[19] | MEUMAN E W, HILMAS G E, FAHRENHOLTZ W G. Processing, microstructure, and mechanical properties of zirconium diboride- boron carbide ceramics. Ceramics International, 2017, 43(9):6942. |
[20] | ZHAO J, LI Q G, CAO W X, et al. Influences of B4C content and particle size on the mechanical properties of hot pressed TiB2-B4C composites. Journal of Asian Ceramic Societies, 2021, 9(3):1239. |
[21] | HAO J J, LI J Y, ZOU B L, et al. Effect of phase composition on the oxidation resistance of ZrB2-SiC coatings. Journal of European Ceramic Society, 2022, 42(5): 2097. |
[22] | MA M D, YE B L, HAN Y J, et al. High-pressure sintering of ultrafine-grained high-entropy diboride ceramics. Journal of the American Ceramic Society, 2020, 103(12):6655. |
[23] | MONTEVERDE F, SARAGA F, GABOARDI M. Compositional disorder and sintering of entropy stabilized (Hf, Nb, Ta, Ti, Zr)B2 solid solution powders. Journal of the American Ceramic Society, 2020, 40(12):3807. |
[24] | MOSHTAGHIOUN B M, GOMEA-ARCIA D, DOMING- RODRIGUEZ A, et al. Grain size dependence of hardness and fracture toughness in pure near fully-dense boron carbide ceramics. Journal of European Ceramic Society, 2016, 36(7): 1829. |
[25] | ZHANG Y, SUN S K, GUO W M, et al. Optimal preparation of high-entropy boride-silicon carbide ceramics. Journal of Advanced Ceramics, 2021, 10(1):173. |
[26] | LIU J X, SHEN X Q, WU Y, et al. Mechanical properties of hot-pressed high-entropy diboride-based ceramics. Journal of Advanced Ceramics, 2020, 9(4):503. |
[27] | SONG Q, ZHANG Z H, HU Z Y, et al. Influences of the pre-oxidation time on the microstructure and flexural strength of monolithic B4C ceramic and TiB2-SiC/B4C composite ceramic. Journal of Alloys and Compounds, 2020, 831: 154852. |
[28] | FAHRENHOLTZ W G. Thermodynamic analysis of ZrB2-SiC oxidation: formation of a SiC-depleted region. Journal of the American Ceramic Society, 2007, 90(1):143. |
[29] | YE B L, WEN T Q, CHU Y H. High-emperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics in air. Journal of the American Ceramic Society, 2020, 103(1):500. |
[30] | ZENG L Y, LIU Q Y, SUN S K. Microstructure evolution of MeB2 (Me=Zr, Ti) powders prepared by borothermal reduction during heat treatment at 1000 ℃-1800 ℃. Ceramics International, 2020, 45(17):23794. |
[1] | SUN Yuxuan, WANG Zheng, SHI Xue, SHI Ying, DU Wentong, MAN Zhenyong, ZHENG Liaoying, LI Guorong. Defect Dipole Thermal-stability to the Electro-mechanical Properties of Fe Doped PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 545-551. |
[2] | CHEN Yi, QIU Haipeng, CHEN Mingwei, XU Hao, CUI Heng. SiC/SiC Composite: Matrix Boron Modification and Mechanical Properties [J]. Journal of Inorganic Materials, 2025, 40(5): 504-510. |
[3] | CUI Ning, ZHANG Yuxin, WANG Lujie, LI Tongyang, YU Yuan, TANG Huaguo, QIAO Zhuhui. Single-phase Formation Process and Carbon Vacancy Regulation of (TiVNbMoW)Cx High-entropy Ceramics [J]. Journal of Inorganic Materials, 2025, 40(5): 511-520. |
[4] | LI Ziwei, GONG Weilu, CUI Haifeng, YE Li, HAN Weijian, ZHAO Tong. (Zr, Hf, Nb, Ta, W)C-SiC Composite Ceramics: Preparation via Precursor Route and Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 271-280. |
[5] | GAO Chenguang, SUN Xiaoliang, CHEN Jun, LI Daxin, CHEN Qingqing, JIA Dechang, ZHOU Yu. SiBCN-rGO Ceramic Fibers Based on Wet Spinning Technology: Microstructure, Mechanical and Microwave-absorbing Properties [J]. Journal of Inorganic Materials, 2025, 40(3): 290-296. |
[6] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[7] | WANG Yueyue, HUANG Jiahui, KONG Hongxing, LI Huaizhu, YAO Xiaohong. Silver Loaded Radial Mesoporous Silica: Preparation and Application in Dental Resins [J]. Journal of Inorganic Materials, 2025, 40(1): 77-83. |
[8] | WANG Wenting, XU Jingjun, MA Ke, LI Meishuan, LI Xingchao, LI Tongqi. Oxidation Behavior at 1000-1300 ℃ in air of Ti2AlC-20TiB2 Synthesized by in-situ Reaction/Hot Pressing [J]. Journal of Inorganic Materials, 2025, 40(1): 31-38. |
[9] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[10] | WU Yuhao, PENG Renci, CHENG Chunyu, YANG Li, ZHOU Yichun. First-principles Study on Mechanical Properties and Melting Curve of HfxTa1-xC System [J]. Journal of Inorganic Materials, 2024, 39(7): 761-768. |
[11] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[12] | SUN Haiyang, JI Wei, WANG Weimin, FU Zhengyi. Design, Fabrication and Properties of Periodic Ordered Structural Composites with TiB-Ti Units [J]. Journal of Inorganic Materials, 2024, 39(6): 662-670. |
[13] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[14] | SU Yi, SHI Yangfan, JIA Chenglan, CHI Pengtao, GAO Yang, MA Qingsong, CHEN Sian. Microstructure and Properties of C/HfC-SiC Composites Prepared by Slurry Impregnation Assisted Precursor Infiltration Pyrolysis [J]. Journal of Inorganic Materials, 2024, 39(6): 726-732. |
[15] | ZHANG Rui, ZHANG Kan, YUAN Mengya, GU Xinlei, ZHENG Weitao. Nitrogen Vacancy Regulated Lattice Distortion on Improvement of (NbMoTaW)Nx Thin Films: Mechanical Properties and Wear Resistance [J]. Journal of Inorganic Materials, 2024, 39(6): 715-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||