Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (7): 800-806.DOI: 10.15541/jim20220736
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
XIAO Yani1(), LYU Jianan1,2, LI Zhenming3, LIU Mingyang3, LIU Wei3, REN Zhigang4, LIU Hongjing4, YANG Dongwang1(
), YAN Yonggao1(
)
Received:
2022-12-05
Revised:
2023-02-23
Published:
2023-03-15
Online:
2023-03-15
Contact:
YANG Dongwang, research assistant. E-mail: ydongwang@whut.edu.cn;About author:
XIAO Yani (1999-), female, Master candidate. E-mail: 303587@whut.edu.cn
Supported by:
CLC Number:
XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials[J]. Journal of Inorganic Materials, 2023, 38(7): 800-806.
Parameter at room temperature | n-type Bi2Se0.21Te2.79 | p-type Bi0.4Sb1.6Te3 | |||
---|---|---|---|---|---|
0 h | 600 h | 0 h | 600 h | ||
σ / (×104, S·m-1) | 9.45 | 7.79 | 9.12 | 8.69 | |
S / (μV·K-1) | 219 | 224 | 243 | 220 | |
n / (×1019, cm-3) | 1.25 | 1.32 | 1.52 | 1.47 | |
μ / (cm2·V-1·s-1) | 470 | 369 | 375 | 370 | |
PF / (mW·m-1·K-2) | 4.54 | 3.90 | 5.41 | 4.21 | |
κ / (W·m-1·K-1) | 1.40 | 1.48 | 1.31 | 1.29 | |
ZT | 0.97 | 0.79 | 1.24 | 0.97 |
Table 1 Room temperature thermoelectric performance of n-type Bi2Se0.21Te2.79 and p-type Bi0.4Sb1.6Te3 materials before and after storage in hygrothermal environment (85 ℃, 85% RH) for 600 h
Parameter at room temperature | n-type Bi2Se0.21Te2.79 | p-type Bi0.4Sb1.6Te3 | |||
---|---|---|---|---|---|
0 h | 600 h | 0 h | 600 h | ||
σ / (×104, S·m-1) | 9.45 | 7.79 | 9.12 | 8.69 | |
S / (μV·K-1) | 219 | 224 | 243 | 220 | |
n / (×1019, cm-3) | 1.25 | 1.32 | 1.52 | 1.47 | |
μ / (cm2·V-1·s-1) | 470 | 369 | 375 | 370 | |
PF / (mW·m-1·K-2) | 4.54 | 3.90 | 5.41 | 4.21 | |
κ / (W·m-1·K-1) | 1.40 | 1.48 | 1.31 | 1.29 | |
ZT | 0.97 | 0.79 | 1.24 | 0.97 |
Fig. 1 (a1, b1) XRD patterns of samples after storage in hygrothermal environment for different time with (a2, b2) EDS results of material surface after storage in hygrothermal environment for 600 h (a1, a2) n-type Bi2Se0.21Te2.79; (b1, b2) p-type Bi0.4Sb1.6Te3
Fig. 2 Surface XPS spectra of n-type Bi2Se0.21Te2.79 material (a1-b1) before and (a2-b2) after storage in hygrothermal environment for 600 h (a1, a2) Bi4f; (b1, b2) Te3d
Fig. 3 Surface XPS spectra of p-type Bi0.4Sb1.6Te3 material (a1-c1) before and (a2-c2) after storage in hygrothermal environment for 600 h (a1, a2) Bi4f; (b1, b2) Te3d; (c1, c2) Sb3d
Fig. 4 FESEM images of (a1, a2) n-type Bi2Se0.21Te2.79 and (b1, b2) p-type Bi0.4Sb1.6Te3 material (a1, b1) before and (a2, b2) after storage in hygrothermal environment for 600 h
Fig. 5 (a) TEM image of the area close to the surface of n-type Bi2Se0.21Te2.79 material exposed to hygrothermal environment for 600 h; (b) elemental surface distribution profiles of the square region in (a); (c) HRTEM image of the square region in (a); (d) IFFT image of (c); (e) HAADF-STEM image of the area close to the surface of p-type Bi0.4Sb1.6Te3 material exposed to hygrothermal environment and (f) its elemental surface distribution profiles of the region (b1, f1) O; (b2, f2) Bi; (b3, f3) Te; (b4)Se; (f4) Sb
Fig. S1 Thermoelectric performance of n-type Bi2Se0.21Te2.79 in hygrothermal environment (85 ℃, 85% RH) (a) Electrical conductivity; (b) Seebeck coefficient; (c) Room temperature carrier concentration and carrier mobility; (d) Power factor; (e) Thermal conductivity; (f) ZT
Fig. S2 Thermoelectric performance of p-type Bi0.4Sb1.6Te3 in hygrothermal environment (85 ℃, 85% RH) (a) Electrical conductivity; (b) Seebeck coefficient; (c) Room temperature carrier concentration and carrier mobility; (d) Power factor; (e) Thermal conductivity; (f) ZT
Fig. S3 FESEM images of samples exposed to hygrothermal environment for different time n-type Bi2Se0.21Te2.79: (a1) 200 h; (a2) 400 h; p-type Bi0.4Sb1.6Te3: (b1) 200 h; (b2) 400 h
[1] |
CORNETT J, CHEN B, HAIDAR S, et al. Fabrication and characterization of Bi2Te3-based chip-scale thermoelectric energy harvesting devices. Journal of Electronic Materials, 2016, 46(5):2844.
DOI URL |
[2] |
LIU C, ZHAO K, FAN Y, et al. A flexible thermoelectric film based on Bi2Te3 for wearable applications. Functional Materials Letters, 2021, 15(1):2251005.
DOI URL |
[3] | NOZARIASBMARZ A, DYCUS J H, CABRAL M J, et al. Efficient self-powered wearable electronic systems enabled by microwave processed thermoelectric materials. Applied Energy, 2021, 283: 116211. |
[4] | HOU C C, VAN TOAN N, ONO T. High density micro-thermoelectric generator based on electrodeposition of Bi2Te3 and Sb2Te3. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), Tokyo, 2022: 600-603. |
[5] |
YAN Q, KANATZIDIS M G. High-performance thermoelectrics and challenges for practical devices. Nature Materials, 2022, 21(5):503.
DOI |
[6] | YUAN X, L Z, SHAO Y, et al. Bi2Te3-based wearable thermoelectric generator with high power density: from structure design to application. Journal of Materials Chemistry C, 2022, 10: 6456. |
[7] |
FRANCIOSO L, DE PASCALI C, FARELLA I, et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. Journal of Power Sources, 2011, 196(6):3239.
DOI URL |
[8] | LU Z, ZHANG H, MAO C, et al. Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Applied Energy, 2016, 164: 57. |
[9] | WANG Y, SHI Y, MEI D, et al. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Applied Energy, 2018, 215: 690. |
[10] |
ZOU Q, SHANG H, HUANG D, et al. Bi2Te3-based flexible thermoelectric generator for wearable electronics. Applied Physics Letters, 2022, 120(2):023903.
DOI URL |
[11] | YOU H, LI Z, SHAO Y, et al. Flexible Bi2Te3-based thermoelectric generator with an ultra-high power density. Applied Thermal Engineering 2022, 202: 117818. |
[12] |
XU Z, YANG D, YUAN X, et al. Objective evaluation of wearable thermoelectric generator: from platform building to performance verification. Review of Scientific Instruments, 2022, 93(4):045105.
DOI URL |
[13] |
HENDRICKS T J, KARRI N K. Micro- and nano-technology: a critical design key in advanced thermoelectric cooling systems. Journal of Electronic Materials, 2009, 38(7):1257.
DOI URL |
[14] |
TANG X, LI Z, LIU W, et al. A comprehensive review on Bi2Te3- based thin films: thermoelectrics and beyond. Interdisciplinary Materials, 2022, 1(1):88.
DOI URL |
[15] | MAMUR H, BHUIYAN M R A, KORKMAZ F, et al. A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renewable and Sustainable Energy Reviews, 2018, 82: 4159. |
[16] | ZHU W, WEI P, ZHANG J, et al. Fabrication and excellent performances of bismuth telluride-based thermoelectric devices. ACS Applied Materials & Interfaces, 2022, 14(10):12276. |
[17] | LIN Y, WU X, LI Y, et al. Revealing multi-stage growth mechanism of Kirkendall voids at electrode interfaces of Bi2Te3-based thermoelectric devices with in-situ TEM technique. Nano Energy, 2022, 102: 107736. |
[18] |
TASHIRO M, SUKENAGA S, IKEMOTO K, et al. Interfacial reactions between pure Cu, Ni, and Ni-Cu alloys and p-type Bi2Te3bulk thermoelectric material. Journal of Materials Science, 2021, 56(29):16545.
DOI |
[19] |
CHEN L, BAI S, SHI X, et al. High temperature interfacial stability of Fe/Bi0.5Sb1.5Te3thermoelectric elements. Journal of Inorganic Materials, 2021, 36(2):197.
DOI URL |
[20] |
ZHENG Y, TAN X Y, WAN X, et al. Thermal stability and mechanical response of Bi2Te3-based materials for thermoelectric applications. ACS Applied Energy Materials, 2019, 3(3): 2078.
DOI URL |
[21] | LIN C F, HAU N Y, HUANG Y T, et al. Synergetic effect of Bi2Te3 alloys and electrodeposition of Ni for interfacial reactions at solder/Ni/Bi2Te3 joints. Journal of Alloys and Compounds, 2017, 708: 220. |
[22] |
JIANG C, FAN X A, HU J, et al. Thermal stability of zone melting p-type (Bi, Sb)2Te3 ingots and comparison with the corresponding powder metallurgy samples. Journal of Electronic Materials, 2018, 47(7):4038.
DOI |
[23] | JIANG C, FAN X A, FENG B, et al. Thermal stability of p-type polycrystalline Bi2Te3-based bulks for the application on thermoelectric power generation. Journal of Alloys and Compounds, 2017, 692: 885. |
[24] |
HU X, FAN X A, JIANG C, et al. Thermal stability of n-type zone- melting Bi2(Te, Se)3 alloys for thermoelectric generation. Materials Research Express, 2018, 6(3):035907.
DOI URL |
[25] | TANG H, HUI B, YANG X, et al. Thermal stability and interfacial structure evolution of Bi2Te3-based micro thermoelectric devices. Journal of Alloys and Compounds, 2022, 896: 163090. |
[26] | ARUN P, TYAGI P, VEDESHWAR, et al. Ageing effect of Sb2Te3 thin films ageing effect of Sb2Te3 thin films. Physica B: Condensed Matter, 2001, 307: 105. |
[27] | BANDO H, KOIZUMI K, OIKAWA Y, et al. The time-dependent process of oxidation of the surface of Bi2Te3 studied by X-ray photoelectron spectroscopy. Journal of Physics: Condensed Matter, 2000, 12: 5607. |
[28] | GUO J H, QIU F, ZHANG Y, et al. Surface oxidation properties in a topological insulator Bi2Te3 film. Chinese Physics Letters, 2013, 30: 106801. |
[29] | MUSIC D, CHANG K, SCHMIDT P, et al. On atomic mechanisms governing the oxidation of Bi2Te3. Journal of Physics: Condensed Matter, 2017, 29: 485705. |
[30] | SIROTINA A P, CALLAERT C, VOLYKHOV A A, et al. Mechanistic studies of gas reactions with multicomponent solids: what can we learn by combining NAP XPS and atomic resolution STEM/EDX? The Journal of Physical Chemistry C, 2019, 123: 26201. |
[31] | THOMAS C R, VALLON M K, FRITH M G, et al. Surface oxidation of Bi2(Te,Se)3 topological insulators depends on cleavage accuracy. Chemistry of Materials, 2016, 28: 35. |
[32] | QU Q, LIU B, LIANG J, et al. Expediting hydrogen evolution through topological surface states on Bi2Te3. ACS Catalysis, 2020, 10: 1656. |
[33] | SHARMA P A, OHTA T, BRUMBACH M T, et al. Ex Situ photoelectron emission microscopy of polycrystalline bismuth and antimony telluride surfaces exposed to ambient oxidation. Applied Materials & Interfaces, 2021, 13: 18218. |
[34] | LU B, HU S, LI W E, et al. Preparation and characterization of Sb2Te3 thin films by coevaporation. International Journal of Photoenergy, 2010, 4: 476589. |
[35] |
NORIMASA O, KUROKAWA T, EGUCHI R, et al. Evaluation of thermoelectric performance of Bi2Te3 films as a function of temperature increase rate during heat treatment. Coatings, 2021, 11(1):38.
DOI URL |
[36] | LI A, NAN P, WANG Y, et al. Chemical stability and degradation mechanism of Mg3Sb2-Bi thermoelectrics towards room-temperature applications. Acta Materialia, 2022, 239: 118301. |
[37] | ZHAO Y, BURDA C. Chemical synthesis of Bi(0.5)Sb(1.5)Te3 nanocrystals and their surface oxidation properties. ACS Applied Materials & Interfaces, 2009, 1(6):1259. |
[38] | JEONG K, PARK D, MAENG I, et al. Modulation of optoelectronic properties of the Bi2Te3nanowire by controlling the formation of selective surface oxidation. Applied Surface Science, 2021, 548: 149069. |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[3] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[4] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[5] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[6] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[7] | HUA Siheng, YANG Dongwang, TANG Hao, YUAN Xiong, ZHAN Ruoyu, XU Zhuoming, LYU Jianan, XIAO Yani, YAN Yonggao, TANG Xinfeng. Effect of Surface Treatment of n-type Bi2Te3-based Materials on the Properties of Thermoelectric Units [J]. Journal of Inorganic Materials, 2023, 38(2): 163-169. |
[8] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[9] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[10] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[11] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[12] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[13] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[14] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[15] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||