Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (7): 807-814.DOI: 10.15541/jim20220751
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Shuling1(), JIANG Meng1, WANG Lianjun1(
), JIANG Wan1,2
Received:
2022-12-14
Revised:
2023-01-31
Published:
2023-03-10
Online:
2023-03-10
Contact:
WANG Lianjun, professor. E-mail: wanglj@dhu.edu.cnAbout author:
WANG Shuling (1999-), female, Master candidate. E-mail: Wangshuling0120@163.com
Supported by:
CLC Number:
WANG Shuling, JIANG Meng, WANG Lianjun, JIANG Wan. n-Type Pb-free AgBiSe2 Based Thermoelectric Materials with Stable Cubic Phase Structure[J]. Journal of Inorganic Materials, 2023, 38(7): 807-814.
Fig. 1 Phase composition of (AgBiSe2)1-x(SnTe)x samples (a) XRD patterns of (AgBiSe2)1-x(SnTe)x powder samples at room temperature and their amplification around 2θ=44°; (b) Lattice constant a varied with SnTe content x with the dotted line showing the best linear fitting; (c) Crystal structure of cubic (AgBiSe2)1-x(SnTe)x; (d) Differential scanning calorimeter (DSC) heat flow curves from 300 K to 750 K
Fig. 2 Temperature dependent thermoelectric properties of (AgBiSe2)1-x(SnTe)x samples (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) ZT
Fig. 5 Phase compositions of (Ag1-yNbyBiSe2)0.75(SnTe)0.25 samples (a) XRD patterns; (b) Lattice constant a changed with the content of Nb, y for sintered (Ag1-yNbyBiSe2)0.75(SnTe)0.25; (c) Surface scan element distributions of y=0.04 sample
Fig. 6 Thermoelectric properties of (Ag1-yNbyBiS e2)0.75(SnTe)0.25 samples Temperature dependent (a) electrical conductivity, (b) Seebeck coefficient, (c) power factor, (e) total and lattice thermal conductivity, and (f) ZT; (d) Absolute value of the Seebeck coefficient as a function of Hall carrier concentration at ambient conditions
Sample | n/cm-3 | μ/(cm2·V-1·s-1) |
---|---|---|
y=0 | 1.12×1020 | 2.98 |
y=0.01 | 1.33×1020 | 2.99 |
y=0.02 | 3.36×1020 | 2.65 |
y=0.03 | 5.92×1020 | 1.38 |
y=0.04 | 2.14×1020 | 2.93 |
Table 1 Carrier concentration n and mobility μ of sample (Ag1-yNbyBiSe2)0.75(SnTe)0.25
Sample | n/cm-3 | μ/(cm2·V-1·s-1) |
---|---|---|
y=0 | 1.12×1020 | 2.98 |
y=0.01 | 1.33×1020 | 2.99 |
y=0.02 | 3.36×1020 | 2.65 |
y=0.03 | 5.92×1020 | 1.38 |
y=0.04 | 2.14×1020 | 2.93 |
[1] | ZHOU W, YAMAMOTO K, MIURA A, et al. Seebeck-driven transverse thermoelectric generation. Nature Materals, 2021, 20(4):463. |
[2] | FREIRE L O, NAVARRETE L M, CORRALES B P, et al. Efficiency in thermoelectric generators based on Peltier cells. Energy Reports, 2021, 7: 355. |
[3] |
ZHANG K, ZHENG Q, WANG L, et al. Preparation and characterization of Ag2Se-based ink used for inkjet printing. Journal of Inorganic Materials, 2022, 37(10):1109.
DOI |
[4] |
MIN J I N, RONGBING L I, CHENGUANG F U, et al. Research progress on crystal growth and the thermoelectric properties of Zintl phase Mg3X2(X= Sb, Bi) based materials. Journal of Inorganic Materials, 2023, 38(3):270.
DOI URL |
[5] |
SHI X, BAI S, XI L, et al. Realization of high thermoelectric performance in n-type partially filled skutterudites. Journal of Materials Research, 2011, 26(15):1745.
DOI URL |
[6] |
BAI H, SU X, YANG D, et al. An instant change of elastic lattice strain during Cu2Se phase transition: origin of abnormal thermoelectric properties. Advanced Functional Materials, 2021, 31(20):2100431.
DOI URL |
[7] |
ZHANG X, ZHAO L D. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015, 1(2):92.
DOI URL |
[8] |
HOANG K, MAHANTI S D. Atomic and electronic structures of I-V-VI2 ternary chalcogenides. Journal of Science: Advanced Materials and Devices, 2016, 1(1):51.
DOI URL |
[9] |
DU B, ZHANG R, CHEN K, et al. The impact of lone-pair electrons on the lattice thermal conductivity of the thermoelectric compound CuSbS2. Journal of Materials Chemistry A, 2017, 5(7):3249.
DOI URL |
[10] |
WANG H, LI J F, ZOU M, et al. Synthesis and transport property of AgSbTe2 as a promising thermoelectric compound. Applied Physics Letters, 2008, 93(20):202106.
DOI URL |
[11] | ROYCHOWDHURY K, GHOSH T, ARORA R, et al. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science, 2021, 371: 722. |
[12] |
GUIN S N, CHATTERJEE A, BISWAS K. Enhanced thermoelectric performance in p-type AgSbSe2 by Cd-doping. RSC Advances, 2014, 4(23):11811.
DOI URL |
[13] |
CAI S, LIU Z, SUN J, et al. Enhancement of thermoelectric properties by Na doping in Te-free p-type AgSbSe2. Dalton Transactions, 2015, 44(3):1046.
DOI URL |
[14] |
BOCHER F, CULVER S P, PEILSTOCKER J, et al. Vacancy and anti-site disorder scattering in AgBiSe2 thermoelectrics. Dalton Transactions, 2017, 46(12):3906.
DOI URL |
[15] |
FAN S J, JIANG M, GU S J, et al. In-situ growth of carbon nanotubes on ZnO to enhance thermoelectric and mechanical properties. Journal of Advanced Ceramics, 2022, 11(12): 1932.
DOI |
[16] | FU Y T, ZHANG Q, HU Z L, et al. Mg3(Bi,Sb)2-based thermoelectric modules for efficient and reliable waste-heat utilization up to 750 K. Energy & Environmental Science, 2022, 15(8):3265. |
[17] |
PAN L, BERARDAN D, DRAGOE N. High thermoelectric properties of n-type AgBiSe2. Journal of The American Chemical Society, 2013, 135(13):4914.
DOI PMID |
[18] |
LIU X, JIN D, LIANG X. Enhanced thermoelectric performance of n-type transformable AgBiSe2 polymorphs by indium doping. Applied Physics Letters, 2016, 109(13):133901.
DOI URL |
[19] | WU H J, WEI P C, CHENG H Y, et al. Ultralow thermal conductivity in n-type Ge-doped AgBiSe2 thermoelectric materials. Acta Materialia, 2017, 141: 217. |
[20] |
GUIN S N, SRIHARI V, BISWAS K. Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping. Journal of Materials Chemistry A, 2015, 3(2):648.
DOI URL |
[21] | ZHAO T, ZHU H, ZHANG B, et al. High thermoelectric performance of tellurium-free n-type AgBi1-xSb Se2 with stable cubic structure enabled by entropy engineering. Acta Materialia, 2021, 220: 117291. |
[22] |
LIU X C, PAN M Y. Structural phase transition and related thermoelectric properties in Sn doped AgBiSe2. Crystals, 2021, 11(9):1016.
DOI URL |
[23] |
WANG T, CHENG C, LIU Y, et al. Inhibition of lattice thermal conductivity of ZrNiSn-based half-Heusler thermoelectric materials by entropy adjustment. Journal of Inorganic Materials, 2022, 37(7):717.
DOI |
[24] |
ZHU H, ZHAO T, ZHANG B, et al. Entropy engineered cubic n-type AgBiSe2 alloy with high thermoelectric performance in fully extended operating temperature range. Advanced Energy Materials, 2020, 11(5):2003304.
DOI URL |
[25] | SHANNON R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallographica, 1976, 32: 751. |
[26] |
MARIANO A N, CHOPRA K L. Polymorphism in some IV-VI compounds induced by high pressure and thin-film epitaxial growth. Applied Physics Letters, 1967, 10(10):282.
DOI URL |
[27] | ZHANG Q, GUO Z, TAN X, et al. Effects of AgBiSe2 on thermoelectric properties of SnTe. Chemical Engineering Journal, 2020, 390: 124585. |
[28] |
TANG X, SU X, TAO Q, et al. Effect of Te and In co-doping on thermoelectric properties of Cu2SnSe3 compounds. Journal of Inorganic Materials, 2022, 37(10):1079.
DOI URL |
[29] |
XIA Q, YING P, HAN Z, et al. Chemical composition engineering leading to the significant improvement in the thermoelectric performance of AgBiSe2-based n-type solid solutions. ACS Applied Energy Materials, 2021, 4(3):2899.
DOI URL |
[30] |
HU Y, YUAN S, HUO H, et al. Stabilized cubic phase BiAgSe2-xSx with excellent thermoelectric properties via phase boundary engineering. Journal of Materials Chemistry C, 2021, 9(21):6766.
DOI URL |
[31] | WU H, LU X, WANG G, et al. Strong lattice anharmonicity securing intrinsically low lattice thermal conductivity and high performance thermoelectric SnSb2Te4 via Se alloying. Nano Energy, 2020, 76: 10508. |
[1] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[2] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[3] | ZHOU Xingyuan, LIU Wei, ZHANG Cheng, HUA Fuqiang, ZHANG Min, SU Xianli, TANG Xinfeng. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions [J]. Journal of Inorganic Materials, 2020, 35(12): 1373-1379. |
[4] | TAN Xiao-Fang, DUAN Si-Chen, WANG Hong-Xiang, WU Qing-Song, LI Miao-Miao, LIU Guo-Qiang, XU Jing-Tao, TAN Xiao-Jian, SHAO He-Zhu, JIANG Jun. Multi-doping in SnTe: Improvement of Thermoelectric Performance due to Lower Thermal Conductivity and Enhanced Power Factor [J]. Journal of Inorganic Materials, 2019, 34(3): 335-340. |
[5] | SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 260-268. |
[6] | WANG Wu-Lian, ZHANG Jun, WANG Qiu-Shi, CHEN Liang, LIU Zhao-Ping. High-quality Fe4[Fe(CN)6]3 Nanocubes: Synthesis and Electrochemical Performance as Cathode Material for Aqueous Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(12): 1301-1308. |
[7] | QIN Yu-Ting, QIU Peng-Fei, SHI Xun, CHEN Li-Dong. ThermoelectricProperties for CuInTe2-xSx (x = 0, 0.05, 0.1, 0.15) Solid Solution [J]. Journal of Inorganic Materials, 2017, 32(11): 1171-1176. |
[8] | SHEN Jun-Jie, ZHU Tie-Jun, YU Cui, YANG Sheng-Hui, ZHAO Xin-Bing. Influence of Ag2Te Doping on the Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys [J]. Journal of Inorganic Materials, 2010, 25(6): 583-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||