Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (11): 1283-1291.DOI: 10.15541/jim20240165
Special Issue: 【能源环境】热电材料(202409)
• RESEARCH LETTER • Previous Articles Next Articles
MENG Yuting(), WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei(), PEI Yanzhong()
Received:
2024-04-02
Revised:
2024-05-20
Published:
2024-11-20
Online:
2024-06-13
Contact:
PEI Yanzhong, professor. E-mail: yanzhong@tongji.edu.cn;About author:
MENG Yuting (1999-), female, Master candidate. E-mail: 2130605@tongji.edu.cn
Supported by:
CLC Number:
MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics[J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291.
Parameter | Bi2Te3 | Bi2Te2.7Se0.3 |
---|---|---|
Eg/eV | 0.14[ | 0.21[ |
μ0,VB,300 K/(cm2·V-1·s-1) | 369 | 265 |
μ0,CB,300 K/(cm2·V-1·s-1) | 487 | 214 |
ΞVB/eV | 11.5 | 12.5 |
ΞCB/eV | 10 | 13.8 |
Nv,VB | 6 | 6 |
Nv,CB | 6 | 6 |
md*,VB/me | 1.06[ | 1.4[ |
md*,CB/me | 1.06[ | 1.4[ |
κL,300 K/(W·m-1·K-1) | - | 0.9 |
Table 1 Parameters used in the two-band model for Bi2Te3 and Bi2Te2.7Se0.3
Parameter | Bi2Te3 | Bi2Te2.7Se0.3 |
---|---|---|
Eg/eV | 0.14[ | 0.21[ |
μ0,VB,300 K/(cm2·V-1·s-1) | 369 | 265 |
μ0,CB,300 K/(cm2·V-1·s-1) | 487 | 214 |
ΞVB/eV | 11.5 | 12.5 |
ΞCB/eV | 10 | 13.8 |
Nv,VB | 6 | 6 |
Nv,CB | 6 | 6 |
md*,VB/me | 1.06[ | 1.4[ |
md*,CB/me | 1.06[ | 1.4[ |
κL,300 K/(W·m-1·K-1) | - | 0.9 |
Fig. 3 Two-band model for n- and p-type Bi2Te3[24,40 -41] at room temperature Seebeck coefficient (a, c) and Hall mobility (b, d) along the in-plane direction with respect to the Hall coefficient and Hall carrier concentration; Colorful figures are available on website
Fig. 4 Two-band model for n- and p-type Bi2Te2.7Se0.3 at room temperature with different mobility ratios Seebeck coefficient (a, c) and Hall mobility (b, d) along the in-plane direction[42⇓⇓⇓⇓⇓⇓-49] (circles) and random-orientation[50⇓⇓-53] (stars) with respect to the Hall coefficient and Hall carrier concentration, respectively; Varying thicknesses of the lines represents two-band curves simulated with different ratios of mobility for conduction and valence bands; Colorful figures are available on website
Fig. 5 Room-temperature Seebeck coefficient (a), total thermal conductivity (b), power factor (c), and zT (d) for n- and p-type Bi2Te2.7Se0.3 (along the in-plane direction[42⇓⇓⇓⇓⇓⇓-49] and random-orientation[50⇓⇓-53]) as a function of electrical conductivity, along with the estimation by single-band (dashed lines) and two-band (solid lines) models Colorful figures are available on website
[1] | GOLDSMID H J. Applications of thermoelectricity. New York: Methuen, 1960: 1-7. |
[2] | SNYDER G J. Thermoelectric power generation: efficiency and compatibility//ROWE D M. Thermoelectrics handbook: macro to nano. Boca Raton: CRC/Taylor & Francis, 2006: 1-26. |
[3] |
KRAEMER D, POUDEL B, FENG H P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nature Materials, 2011, 10(7): 532.
DOI PMID |
[4] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457.
DOI PMID |
[5] | MAO J, CHEN G, REN Z. Thermoelectric cooling materials. Nature Materials, 2020, 20(4): 454. |
[6] | PLATZEK D, KARPINSKI G, DRASAR C, et al. Seebeck scanning microprobe for thermoelectric FGM. Materials Science Forum, 2005, 492/493: 587. |
[7] |
BU Z, ZHANG X, HU Y, et al. A record thermoelectric efficiency in tellurium-free modules for low-grade waste heat recovery. Nature Communications, 2022, 13: 237.
DOI PMID |
[8] |
MAO J, ZHU H, DING Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science, 2019, 365: 495.
DOI |
[9] | CHEN Z, ZHANG X, PEI Y. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018, 30(17): e1705617. |
[10] | PEI Y, WANG H, SNYDER G J. Band engineering of thermoelectric materials. Advanced Materials, 2012, 24(46): 6125. |
[11] | LI W, CHEN Z, LIN S, et al. Band and scattering tuning for high performance thermoelectric Sn1-xMnxTe alloys. Journal of Materiomics, 2015, 1(4): 307. |
[12] | PEI Y, LALONDE A D, WANG H, et al. Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 2012, 5(7): 7963. |
[13] | HE R, SCHIERNING G, NIELSCH K. Thermoelectric devices: a review of devices, architectures, and contact optimization. Advanced Materials Technologies, 2018, 3(4): 1700256. |
[14] | SHARMA S, DWIVEDI V K, PANDIT S N. A review of thermoelectric devices for cooling applications. International Journal of Green Energy, 2014, 11(9): 899. |
[15] | PEI J, CAI B W, ZHUANG H L, et al. Bi2Te3-based applied thermoelectric materials: research advances and new challenges. National Science Review, 2020, 7(12): 1856. |
[16] | HONG M, CHEN Z G, ZIOU J. Fundamental and progress of Bi2Te3-based thermoelectric materials. Chinese Physics B, 2018, 27(4): 048403. |
[17] | HU L P, ZHU T J, LIU X H, et al. Point defect engineering of high-performance bismuth-telluride-based thermoelectric materials. Advanced Functional Materials, 2014, 24(33): 5211. |
[18] | AHMAD S, SINGH A, BOHRA A, et al. Boosting thermoelectric performance of p-type SiGe alloys through in-situ metallic YSi2 nanoinclusions. Nano Energy, 2016, 27: 282. |
[19] | ZHU G H, LEE H, LAN Y C, et al. Increased phonon scattering by nanograins and point defects in nanostructured silicon with a low concentration of germanium. Physical Review Letters, 2009, 102(19): 196803. |
[20] | CHEN Z W, ZHANG X Y, REN J, et al. Leveraging bipolar effect to enhance transverse thermoelectricity in semimetal Mg2Pb for cryogenic heat pumping. Nature Communications, 2021, 12: 3837. |
[21] | TANG C, HUANG Z, PEI J, et al. Bi2Te3 single crystals with high room-temperature thermoelectric performance enhanced by manipulating point defects based on first-principles calculation. RSC Advance, 2019, 9(25): 14422. |
[22] | SATTERTHWAITE C B, URE R W. Electrical and thermal properties of Bi2Te3. Physical Review, 1957, 108(5): 1164. |
[23] | ZHANG Q, FANG T, LIU F, et al. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chemistry - An Asian Journal, 2020, 15(18): 2775. |
[24] | WITTING I T, CHASAPIS T C, RICCI F, et al. The thermoelectric properties of bismuth telluride. Advanced Electronic Materials, 2019, 5(6): 1800904. |
[25] | KIM H S, HEINZ N A, GIBBS Z M, et al. High thermoelectric performance in (Bi0.25Sb0.75)2Te3 due to band convergence and improved by carrier concentration control. Materials Today, 2017, 20(8): 452. |
[26] | MADAR N, GIVON T, MOGILYANSKY D, et al. High thermoelectric potential of Bi2Te3 alloyed GeTe-rich phases. Journal of Applied Physics, 2016, 120(3): 035102. |
[27] | GREENAWAY D L, HARBEKE G. Band structure of bismuth telluride, bismuth selenide and their respective alloys. Journal of Physics and Chemistry of Solids, 1965, 26(10): 1585. |
[28] | ZHU T, HU L, ZHAO X, et al. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Advanced Science, 2016, 3(7): 1600004. |
[29] | ZHU B, LIU X X, WANG Q, et al. Realizing record high performance in n-type Bi2Te3-based thermoelectric materials. Energy & Environmental Science, 2020, 13(7): 2106. |
[30] | KIM S I, LEE K H, MUN H A, et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science, 2015, 348(6230): 109. |
[31] |
YAN X, POUDEL B, MA Y, et al. Experimental studies on anisotropic thermoelectric properties and structures of n-type Bi2Te2.7Se0.3. Nano Letters, 2010, 10(9): 3373.
DOI PMID |
[32] | QIN C, JIN M, ZHANG R L, et al. Preparation and thermoelectric properties of ZnTe-doped Bi0.5Sb1.5Te3 single crystal. Mateials Letters, 2021, 292: 129619. |
[33] | GOLDSMID H J. Introduction to thermoelectricity. Heidelberg: Springer, 2009: 7-21. |
[34] | MAY A F, SNYDER G J. Introduction to modeling thermoelectric transport at high temperatures// ROWE D W. Materials, preparation, and characterization in thermoelectrics. New York: CRC Press, 2012: K1-K18. |
[35] | KIM M, KIM S I, KIM S W, et al. Weighted mobility ratio engineering for high-performance Bi-Te-based thermoelectric materials via suppression of minority carrier transport. Advanced Materials, 2021, 33(47): 2005931. |
[36] | GOLDSMID H J. Thermoelectric refrigeration. New York: Plenum Press, 1964. |
[37] | KANG S D, SNYDER G J. Transport property analysis method for thermoelectric materials: material quality factor and the effective mass model. [2017-10-18]. https://arxiv.org/abs/1710.06896. |
[38] | DOS SANTOS C A M, DE CAMPOS A, DA LUZ M S, et al. Procedure for measuring electrical resistivity of anisotropic materials: a revision of the Montgomery method. Journal of Applied Physics, 2011, 110(8): 083703. |
[39] | LEVY M, SARACHIK M P. Measurement of the Hall coefficient using van der Pauw method without magnetic field reversal. Review of Scientific Instruments, 1989, 60(7): 1342. |
[40] | PLECHÁČEK T, NAVRÁTIL J, HORÁK J, et al. Defect structure of Pb-doped Bi2Te3 single crystals. Philosophical Magazine, 2004, 84(21): 2217. |
[41] | NAVRATIL J, LOSTAK P, HORAK J. Transport coefficient of gallium-doped Bi2Te3 single-crystals. Crystal Reserch and Technology, 1991, 26(6): 675. |
[42] | ZHANG Q, ZHAI R S, FANG T, et al. Low-cost p-type Bi2Te2.7Se0.3 zone-melted thermoelectric materials for solid-state refrigeration. Journal of Alloys and Compounds, 2020, 831: 154732. |
[43] | BIRKHOLZ U. Untersuchung der intermetallischen Verbindung Bi2Te3 sowie der festen Lösungen Bi2-xSbxTe3 und Bi2Te3-xSex hinsichtlich ihrer Eignung als Material für Halbleiter-Thermoelemente. Zeitschrift für Naturforschung A, 1958, 13: 780. |
[44] | HU L, WU H, ZHU T, et al. Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride- based solid solutions. Advanced Energy Materials, 2015, 5(17): 1500411. |
[45] | XIONG C L, SHI F F, WANG H X, et al. Achieving high thermoelectric performance of n-type Bi2Te2.79Se0.21 sintered materials by hot-stacked deformation. ACS Applied Materials & Interfaces, 2021, 13(13): 15429. |
[46] | WU G, TAN X J, YUAN M H, et al. High thermoelectric and mechanical performance in strong-textured n-type Bi2Te2.7Se0.3 by temperature gradient method. Chemical Engineering Journal, 2023, 470: 144085. |
[47] | WANG S Y, TAN G J, XIE W J, et al. Enhanced thermoelectric properties of Bi2(Te1-xSex)3-based compounds as n-type legs for low-temperature power generation. Journal of Materials Chemistry, 2012, 22(39): 20943. |
[48] | HUANG W J, TAN X J, CAI J F, et al. Synergistic effects improve thermoelectric properties of zone-melted n-type Bi2Te2.7Se0.3. Materials Today Physics, 2023, 32: 101022. |
[49] | JARIWALA B, SHAH D, RAVINDRA N M. Transport property measurements in doped Bi2Te3 single crystals obtained via zone melting method. Journal of Electronic Materials, 2015, 44(6): 1509. |
[50] | LI L, WEI P, YANG M J, et al. Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2.7Se0.3. Science China Materials, 2023, 66(9): 3651. |
[51] | KIM J H, CHO H, BACK S Y, et al. Lattice distortion and anisotropic thermoelectric properties in hot-deformed CuI-doped Bi2Te2.7Se0.3. Journal of Alloys and Compounds, 2020, 815: 152649. |
[52] | LEE G E, KIM I H, LIM Y S, et al. Preparation and thermoelectric properties of iodine-doped Bi2Te2.7Se0.3 solid solutions. Journal of the Korean Physical Society, 2014, 65(5): 696. |
[53] | LIU W S, ZHANG Q Y, LAN Y C, et al. Thermoelectric property studies on Cu-doped n-type CuxBi2Te2.7Se0.3 nanocomposites. Advanced Energy Materials, 2011, 1(4): 577. |
[54] | LI S J, CHEN T, YANG S H, et al. Attaining high figure of merit in the n-type Bi2Te2.7Se0.3-Ag2Te composite system via comprehensive regulation of its thermoelectric properties. ACS Applied Materials & Interfaces, 2023, 15(30): 36457. |
[55] | JUNG Y J, KIM H S, WON J H, et al. Thermoelectric properties of Cu2Te nanoparticle incorporated n-type Bi2Te2.7Se0.3. Materials, 2022, 15(6): 2284. |
[56] | ZOU P, XU G Y, WANG S, et al. Effect of high pressure sintering and annealing on microstructure and thermoelectric properties of nanocrystalline Bi2Te2.7Se0.3 doped with Gd. Progress in Natural Science: Materials International, 2014, 24(3): 210. |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[3] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[4] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[5] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[6] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[7] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[8] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[9] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[10] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[11] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[12] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[13] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[14] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
[15] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||