Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (9): 936-942.DOI: 10.15541/jim20200635
Special Issue: 【虚拟专辑】热电材料(2020~2021)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Cencen(), WANG Xue, PENG Liangming()
Received:
2020-11-08
Revised:
2021-01-12
Published:
2021-09-20
Online:
2021-01-25
Contact:
PENG Liangming, professor. E-mail: penglm@ustc.edu.cn
About author:
ZHANG Cencen(1995-), female, PhD candidate. E-mail: zcccate@mail.ustc.edu.cn
CLC Number:
ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components[J]. Journal of Inorganic Materials, 2021, 36(9): 936-942.
Nominal composition | Sample ID | RH/(cm3∙C-1) | nH/(´1019, cm-3) | μH/(cm2∙V-1∙s-1) | |
---|---|---|---|---|---|
Matrix | PbTe | A | -0.203 | 3.075 | 82.691 |
Dual component | (PbTe)0.97(PbS)0.03 | AB3 | -0.099 | 6.319 | 104.962 |
(PbTe)0.95(PbS)0.05 | AB5 | -0.115 | 5.918 | 98.805 | |
(PbTe)0.93(PbS)0.07 | AB7 | -0.087 | 7.223 | 40.345 | |
Triple component | (PbTe)0.945(PbS)0.05(Sb2Se3)0.005 | AB5C0.5 | -0.071 | 8.752 | 89.784 |
(PbTe)0.94(PbS)0.05(Sb2Se3)0.01 | AB5C1 | -0.116 | 5.406 | 51.586 | |
(PbTe)0.935(PbS)0.05(Sb2Se3)0.015 | AB5C1.5 | -0.106 | 5.924 | 30.806 |
Table 1 Sample ID, Hall coefficients, carrier concentrations and mobilities at room temperature for (PbTe)1-x-y(PbS)x(Sb2Se3)y
Nominal composition | Sample ID | RH/(cm3∙C-1) | nH/(´1019, cm-3) | μH/(cm2∙V-1∙s-1) | |
---|---|---|---|---|---|
Matrix | PbTe | A | -0.203 | 3.075 | 82.691 |
Dual component | (PbTe)0.97(PbS)0.03 | AB3 | -0.099 | 6.319 | 104.962 |
(PbTe)0.95(PbS)0.05 | AB5 | -0.115 | 5.918 | 98.805 | |
(PbTe)0.93(PbS)0.07 | AB7 | -0.087 | 7.223 | 40.345 | |
Triple component | (PbTe)0.945(PbS)0.05(Sb2Se3)0.005 | AB5C0.5 | -0.071 | 8.752 | 89.784 |
(PbTe)0.94(PbS)0.05(Sb2Se3)0.01 | AB5C1 | -0.116 | 5.406 | 51.586 | |
(PbTe)0.935(PbS)0.05(Sb2Se3)0.015 | AB5C1.5 | -0.106 | 5.924 | 30.806 |
Fig. 2 Lattice parameters a and migration angle Δ2θ of PbTe varied as functions of contents of different components (a) Matrix, dual-component; (b) Triple-component systems
Fig. 4 Temperature dependences of thermoelectric properties for dual-component samples ABm (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) ZT
Fig. 5 Temperature dependences of thermoelectric properties for triple-component samples AB5Cn (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) ZT
Fig. 6 (a) Fractured surfure SEM and (b) back-scattered electron (BSE) images for sample AB5, (c) fractured surfure SEM image, (d) back-scattered electron (BSE) image and (e) EDS mappings for sample AB5C1
[1] |
YUAN G C, HAN S B, LEI X B, et al. The enhancement of thermoelectric performance of p-type Li doped Mg2Ge0.4Sn0.6 by Si addition. Scripta Materialia, 2019, 166:122-127.
DOI URL |
[2] |
YU G T, XIN J Z, ZHAO T J, et al. Thermoelectric property of Zn-Sb doped Mg2(Si,Sn) alloys. Journal of Inorganic Materials, 2019, 34(3):310-314.
DOI URL |
[3] |
XIAO Y, WU H J, WANG D Y, et al. Amphoteric indium enables carrier engineering to enhance the power factor and thermoelectric performance in n-type AgnPb100InnTe100+2n (LIST). Advanced Energy Materials, 2019, 9(17):1900414.
DOI URL |
[4] |
ZHOU Y M, ZHOU Y L, PANG Q T, et al. Different doping sites of Ag on Cu2SnSe3 and their thermoelectric property. Journal of Inorganic Materials, 2019, 34(3):301-309.
DOI URL |
[5] |
SONG J M, RAHMAN J U, CHO J Y, et al. Chemically synthesized Cu2Te incorporated Bi-Sb-Te p-type thermoelectric materials for low temperature energy harvesting. Scripta Materialia, 2019, 165:78-83.
DOI URL |
[6] |
ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017, 29(14):1605884.
DOI URL |
[7] |
ZHOU Z X, LI J L, FAN Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scripta Materialia, 2019, 162:166-171.
DOI URL |
[8] |
XIAO Y, ZHAO L D. Charge and phonon transport in PbTe-based thermoelectric materials. npj Quantum Materials, 2018, 3(1):55.
DOI URL |
[9] |
ZHAI J Z, WANG T, WANG H C, et al. Strategies for optimizing the thermoelectricity of PbTe alloys. Chinese Physics B, 2018, 27(4):047306.
DOI URL |
[10] |
CHERE E K, ZHANG Q, MCENANEY K, et al. Enhancement of thermoelectric performance in n-type PbTe1-ySey by doping Cr and tuning Te:Se ratio. Nano Energy, 2015, 13:355-367.
DOI URL |
[11] |
ZHANG C C, ZHAO Y, GU P, et al. Thermoelectric performance in pseudo-ternary (PbTe)0.95-x(Sb2Se3)x(PbS)0.05 system with ultra-low thermal conductivity via multi-scale phonon scattering. Current Applied Physics, 2020, 20(9):1008-1012.
DOI URL |
[12] |
XIAO Y, WANG D Y, QIN B C, et al. Approaching topological insulating states leads to high thermoelectric performance in n-type PbTe. Journal of the American Chemical Society, 2018, 140:13097-13102.
DOI URL |
[13] |
JAVIER F T, PABLO A P, JORGE K. Effect of intrinsic defects on the thermal conductivity of PbTe from classical molecular dynamics simulations. Journal of Physics: Condensed Matter, 2020, 32(4):045701.
DOI URL |
[14] |
PEI Y L, TAN G J, DAN F, et al. Integrating band structure engineering with all-scale hierarchical structuring for high thermoelectric performance in PbTe system. Advanced Energy Materials, 2017, 7(3):1601450.
DOI URL |
[15] | PEI Y Z, LALONDE A, LWANAGE S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011, 4(6):2085-2089. |
[16] | XIAO Y, WU H J, CUI J, et al. Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy & Environmental Science, 2018, 11(9):2486-2495. |
[17] |
WU Y X, NAN P F, CHEN Z W, et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands. Advanced Science, 2020, 7(12):1902628.
DOI URL |
[18] |
LI J Q, LU Z W, LI S M, et al. High thermoelectric properties of PbTe-Sm2Se3 composites. Scripta Materialia, 2016, 112:144-147.
DOI URL |
[19] | KIM Y J, ZHAO L D, KANATZIDIS M G, et al. Analysis of nanoprecipitates in a Na-doped PbTe-SrTe thermoelectric material with a high figure of merit. ACS Applied Materials & Interfaces, 2017, 9(26):21791-21797. |
[20] |
GINTING D, LIN C C, RHYEE J S. Synergetic approach for superior thermoelectric performance in PbTe-PbSe-PbS quaternary alloys and composites. Energies, 2019, 13(1):72.
DOI URL |
[21] |
GINTING D, LIN C C, LYDIA R, et al. High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95-x(PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation. Acta Materialia, 2017, 131:98-109.
DOI URL |
[22] |
SUN H, YU F R, ZHAO P, et al. Thermoelectric performance of single elemental doped n-type PbTe regulated by carrier concentration. Journal of Alloys and Compounds, 2019, 787:180-185.
DOI URL |
[23] |
JOOD P, MALE J P, ANAND S, et al. Na doping in PbTe: solubility, band convergence, phase boundary mapping, and thermoelectric properties. Journal of the American Chemical Society, 2020, 142(36):15464-15475.
DOI URL |
[24] | YAMINI S A, WANG H, GINTING D, et al. Thermoelectric performance of n-type (PbTe)0.75(PbS)0.15(PbSe)0.1 composites. ACS Applied Materials & Interfaces, 2014, 6:11476-11483. |
[25] |
QIN B C, HU X G, ZHANG Y, et al. Comprehensive investigation on the thermoelectric properties of p-type PbTe-PbSe-PbS alloys. Advanced Electronic Materials, 2019, 5(12):1900609.
DOI URL |
[26] | QIAN X, WU H J, ZHANG D Y, et al. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy & Environmental Science, 2019, 12(6):1969-1978. |
[27] |
ALIABAD H R, RAD F A. Structural, electronic and thermoelectric properties of bulk and monolayer of Sb2Se3 under high pressure: by GGA and mBJ approaches. Physica B: Condensed Matter, 2018, 545:275-284
DOI URL |
[28] | FU L W, YIN M J, WU D, et al. Large enhancement of thermoelectric properties in n-type PbTe via dual-site point defects. Energy & Environmental Science, 2017, 10(9):2030-2040. |
[29] |
GIRARD S N, HE J Q, LI C P, et al. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Letters, 2010, 10:2825-2831.
DOI URL |
[30] |
TAN G J, STOUMPOS C C, WANG S, et al. Subtle roles of Sb and S in regulating the thermoelectric properties of N-type PbTe to high performance. Advanced Energy Materials, 2017, 7(18):1700099.
DOI URL |
[31] |
LU Y, LI K Y, ZHANG X L, et al. Theoretical study on electronic structure and thermoelectric properties of PbSxTe1-x (x=0.25, 0.5, and 0.75) solid solution. Chinese Physics B, 2018, 27(2):026103.
DOI URL |
[32] |
YANG Z, WANG S Q, SUN Y J, et al. Enhancing thermoelectric performance of n-type PbTe through separately optimizing phonon and charge transport properties. Journal of Alloys and Compounds, 2020, 828:154377.
DOI URL |
[33] |
SHAABANI L, BLAKE G R, MANETTAS A, et al. Thermoelectric performance of single-phase tellurium-reduced quaternary (PbTe)0.55(PbS)0.1(PbSe)0.35. ACS Omega, 2019, 4(5):9235-9240.
DOI URL |
[34] |
SU X L, HAO S Q, BAILEY T P, et al. Weak electron phonon coupling and deep level impurity for high thermoelectric performance Pb1-xGaxTe. Advanced Energy Materials, 2018, 8:1800659.
DOI URL |
[35] |
ZHANG Q, CHERE E K, WANG Y M, et al. High thermoelectric performance of n-type PbTe1-ySy due to deep lying states induced by indium doping and spinodal decomposition. Nano Energy, 2016, 22:572-582.
DOI URL |
[36] |
BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012, 489(7416):414-418.
DOI URL |
[37] |
ZHAO M H, CHANG C, XIAO Y, et al. High performance of n-type (PbS)1-x-y(PbSe)x(PbTe)y thermoelectric materials. Journal of Alloys and Compounds, 2018, 744:769-777.
DOI URL |
[38] |
WANG S Q, YANG Z, SUN Y J, et al. Synergistically optimizing charge and phonon transport properties in n-type PbTe via introducing ternary compound AgSb(Se, Te)2. Journal of Alloys and Compounds, 2020, 815:152463.
DOI URL |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[3] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[4] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[5] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[6] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[7] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[8] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[9] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[10] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[11] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[12] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[13] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[14] | KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO [J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046. |
[15] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||