Journal of Inorganic Materials ›› 2024, Vol. 39 ›› Issue (1): 17-31.DOI: 10.15541/jim20230345
• REVIEW • Previous Articles Next Articles
KE Xin1,2(), XIE Bingqing1,2, WANG Zhong1,3(
), ZHANG Jingguo1,3,4, WANG Jianwei1,3, LI Zhanrong1,3,4, HE Huijun1,3, WANG Limin1,3
Received:
2023-08-01
Revised:
2023-10-12
Published:
2024-01-20
Online:
2023-11-22
Contact:
WANG Zhong, professor. E-mail: wzwz99@126.comAbout author:
KE Xin (1997-), male, PhD candidate. E-mail: kexin0308@qq.com
Supported by:
CLC Number:
KE Xin, XIE Bingqing, WANG Zhong, ZHANG Jingguo, WANG Jianwei, LI Zhanrong, HE Huijun, WANG Limin. Progress of Interconnect Materials in the Third-generation Semiconductor and Their Low-temperature Sintering of Copper Nanoparticles[J]. Journal of Inorganic Materials, 2024, 39(1): 17-31.
Parameter | Si | GaAs | SiC | GaN | Diamond |
---|---|---|---|---|---|
Band gap/eV | 1.12 | 1.43 | 3.26 | 3.45 | 5.45 |
Dielectric constant | 11.9 | 13.1 | 10.1 | 9 | 5.5 |
Breakdown field/ (kV·cm-1) | 300 | 400 | 2200 | 2000 | 10000 |
Electron mobility/(cm2·V-1·s-1) | 1500 | 8500 | 1000 | 1250 | 2200 |
Hole mobility/ (cm2·V-1·s-1) | 600 | 400 | 115 | 850 | 850 |
Thermal conductivity/ (W·cm-1·K-1) | 1.5 | 0.46 | 4.9 | 1.3 | 22 |
Electron saturation drift velocity/(×107, cm·s-1) | 1 | 1 | 2 | 2.2 | 2.7 |
Table 1 Comparison on performance parameters of the main semiconductor material [10]
Parameter | Si | GaAs | SiC | GaN | Diamond |
---|---|---|---|---|---|
Band gap/eV | 1.12 | 1.43 | 3.26 | 3.45 | 5.45 |
Dielectric constant | 11.9 | 13.1 | 10.1 | 9 | 5.5 |
Breakdown field/ (kV·cm-1) | 300 | 400 | 2200 | 2000 | 10000 |
Electron mobility/(cm2·V-1·s-1) | 1500 | 8500 | 1000 | 1250 | 2200 |
Hole mobility/ (cm2·V-1·s-1) | 600 | 400 | 115 | 850 | 850 |
Thermal conductivity/ (W·cm-1·K-1) | 1.5 | 0.46 | 4.9 | 1.3 | 22 |
Electron saturation drift velocity/(×107, cm·s-1) | 1 | 1 | 2 | 2.2 | 2.7 |
Material | Temperature/℃ | Relative market price* | Relative performance | ||
---|---|---|---|---|---|
Bonding | IMC | Thermal conductivity | Electrical conductivity | ||
Cu-Sn | 280 | 415(Cu6Sn5) | Cu: 0.5 | Cu: 4.4 | Cu: 4.1 |
676(Cu3Sn) | Sn: 0.8 | ||||
Ni-Sn | 300 | 800(Ni3Sn3) | Ni: 1 | Ni: 1 | Ni: 1 |
Sn: 0.8 | |||||
Au-Sn | 250 | 419(AuSn) | Au: 2600 | Au: 3.5 | Au: 3.1 |
Sn: 0.8 | |||||
Ag-Sn | 250 | 480(Ag3Sn) | Ag: 63 | Ag: 4.7 | Ag: 4.4 |
Sn: 0.8 | |||||
Ag-In | 200 | 495 | Ag: 63 | Ag: 4.7 | Ag: 4.7 |
In: 37.5 | |||||
Au-In | 175 | 880 | Au: 2600 | Au: 3.1 | Au: 3.1 |
In: 37.5 |
Table 2 Various TLP bonding materials and their properties[60]
Material | Temperature/℃ | Relative market price* | Relative performance | ||
---|---|---|---|---|---|
Bonding | IMC | Thermal conductivity | Electrical conductivity | ||
Cu-Sn | 280 | 415(Cu6Sn5) | Cu: 0.5 | Cu: 4.4 | Cu: 4.1 |
676(Cu3Sn) | Sn: 0.8 | ||||
Ni-Sn | 300 | 800(Ni3Sn3) | Ni: 1 | Ni: 1 | Ni: 1 |
Sn: 0.8 | |||||
Au-Sn | 250 | 419(AuSn) | Au: 2600 | Au: 3.5 | Au: 3.1 |
Sn: 0.8 | |||||
Ag-Sn | 250 | 480(Ag3Sn) | Ag: 63 | Ag: 4.7 | Ag: 4.4 |
Sn: 0.8 | |||||
Ag-In | 200 | 495 | Ag: 63 | Ag: 4.7 | Ag: 4.7 |
In: 37.5 | |||||
Au-In | 175 | 880 | Au: 2600 | Au: 3.1 | Au: 3.1 |
In: 37.5 |
Fig. 7 Cu@Ag nanoparticles and performance characterization[85] (a, b) STEM images of Cu@Ag nanoparticles; (c) Schematic diagram of the filling effect of nanoparticles on silver conductive adhesive; (d) Influence of the conductive fillers’ percentages on the strength of the conductive adhesives; (e) Dependence of conductive fillers’ percentages on the strength and conductivity of conductive adhesive with 60%Cu@Ag/40% Ag plates
Fig. 8 Structures of micro-nano copper particles mixed with different particle sizes[90] (a) TEM image showing micron particles; (b) TEM image showing nanoparticles
Fig. 10 Schematic diagram of oxidation effect of surface layer of copper nanoparticles on the sintering performance[94] (a) With CuO outer layer; (b) No CuO outer layer
Particle size | Appearance | Sintering process | Electrical conductivity/ (μΩ·cm) | Shearing performance/ MPa | Ref. |
---|---|---|---|---|---|
10 and 1000 nm particle compound | Irregular | Ar, 250 ℃, 2 MPa, 15 min | 5.44 | 45.6 | [ |
200 nm, 1000 nm | Spherical | N2, 350 ℃, 0.4 MPa | - | 40 | [ |
530 nm | Irregular | 97% N2-3% H2, 300 ℃, 30 min | - | 23 | [ |
60-100 nm | Angular | N2, 200 ℃, 60 min | 18 | - | [ |
Thick 200 nm, length 3-5 μm | Spherical | N2, 275 ℃, 10 MPa, 30 min | - | 50 | [ |
30-400 nm | Angular | N2, 300 ℃, 0.4 MPa, 30 min | - | 24.8 | [ |
6.5 nm | Spherical | Ar, 250 ℃, 5 MPa, 30 min | - | 36.2 | [ |
100 nm | Spherical | Air, 225 ℃, 8 MPa, 10 min | 59±7 | 28.7±1.6 | [ |
500 nm | Angular | HCOOH, 275 ℃, 5 MPa, 30 min | - | 70 | [ |
60.5 nm | Spherical | 95% Ar-5% H2, 300 ℃, 1.08 MPa, 60 min | 11.2 | 31.88 | [ |
30 nm | Spherical | 95% N2-5% H2, 320 ℃, 10 MPa, 5 min | 3.16 | 51.7 | [ |
54-64 nm | Sphere-like | H2, 400 ℃, 1.2 MPa, 5 min | - | 37.7 | [ |
5 nm | Sphere-like | 95% Ar-5% H2, 250 ℃, 1.08 MPa, 60 min | 4.1 | 25.36 | [ |
400-1200 nm | Sphere-like | Air, 200 ℃, 50 s | 54±2 | - | [ |
300-400 nm | Sphere-like | N2, 200 ℃, 30 min | 139±24 | - | [ |
1-3 μm | Sphere-like | Air, 180 ℃, 5 min | 30 | - | [ |
200 nm | Spherical | Air, 300 ℃, 2 MPa, 1 min | - | 21.8 | [ |
50 nm | Spherical | Air, 220 ℃, 5 min | - | 30 | [ |
10 nm | Spherical | N2, 200 ℃, 30 min | 14.0±4.5 | - | [ |
6.5 nm | Spherical | Air, 175 ℃, 2 MPa, 10 min | - | 35.1 | [ |
60 nm | Sphere-like | 95% Ar-5% H2, 250 ℃, 10 MPa, 60 min | - | 32.4 | [ |
4.4 nm | Angular | N2, 150 ℃, 30 min | 52 | - | [ |
Tens to hundreds of nanometers | Irregular | Vacuum, 300 ℃, 0.4 MPa,30 min | - | 20 | [ |
<10 nm | Angular | Ar, 250 ℃, 3 MPa, 30 min | 5.1 | - | [ |
Table 3 Comparison of various low-temperature sintering processes and their performance
Particle size | Appearance | Sintering process | Electrical conductivity/ (μΩ·cm) | Shearing performance/ MPa | Ref. |
---|---|---|---|---|---|
10 and 1000 nm particle compound | Irregular | Ar, 250 ℃, 2 MPa, 15 min | 5.44 | 45.6 | [ |
200 nm, 1000 nm | Spherical | N2, 350 ℃, 0.4 MPa | - | 40 | [ |
530 nm | Irregular | 97% N2-3% H2, 300 ℃, 30 min | - | 23 | [ |
60-100 nm | Angular | N2, 200 ℃, 60 min | 18 | - | [ |
Thick 200 nm, length 3-5 μm | Spherical | N2, 275 ℃, 10 MPa, 30 min | - | 50 | [ |
30-400 nm | Angular | N2, 300 ℃, 0.4 MPa, 30 min | - | 24.8 | [ |
6.5 nm | Spherical | Ar, 250 ℃, 5 MPa, 30 min | - | 36.2 | [ |
100 nm | Spherical | Air, 225 ℃, 8 MPa, 10 min | 59±7 | 28.7±1.6 | [ |
500 nm | Angular | HCOOH, 275 ℃, 5 MPa, 30 min | - | 70 | [ |
60.5 nm | Spherical | 95% Ar-5% H2, 300 ℃, 1.08 MPa, 60 min | 11.2 | 31.88 | [ |
30 nm | Spherical | 95% N2-5% H2, 320 ℃, 10 MPa, 5 min | 3.16 | 51.7 | [ |
54-64 nm | Sphere-like | H2, 400 ℃, 1.2 MPa, 5 min | - | 37.7 | [ |
5 nm | Sphere-like | 95% Ar-5% H2, 250 ℃, 1.08 MPa, 60 min | 4.1 | 25.36 | [ |
400-1200 nm | Sphere-like | Air, 200 ℃, 50 s | 54±2 | - | [ |
300-400 nm | Sphere-like | N2, 200 ℃, 30 min | 139±24 | - | [ |
1-3 μm | Sphere-like | Air, 180 ℃, 5 min | 30 | - | [ |
200 nm | Spherical | Air, 300 ℃, 2 MPa, 1 min | - | 21.8 | [ |
50 nm | Spherical | Air, 220 ℃, 5 min | - | 30 | [ |
10 nm | Spherical | N2, 200 ℃, 30 min | 14.0±4.5 | - | [ |
6.5 nm | Spherical | Air, 175 ℃, 2 MPa, 10 min | - | 35.1 | [ |
60 nm | Sphere-like | 95% Ar-5% H2, 250 ℃, 10 MPa, 60 min | - | 32.4 | [ |
4.4 nm | Angular | N2, 150 ℃, 30 min | 52 | - | [ |
Tens to hundreds of nanometers | Irregular | Vacuum, 300 ℃, 0.4 MPa,30 min | - | 20 | [ |
<10 nm | Angular | Ar, 250 ℃, 3 MPa, 30 min | 5.1 | - | [ |
[1] |
TSUYOSHI F, JUAN C B, JEREMY J, et al. Power conversion with SiC devices at extremely high ambient temperature. IEEE Transactions on Power Electronics, 2007, 22(4):1321.
DOI URL |
[2] |
TSUYOSHI F, HIROYASU I, MASASHI S, et al. Characterization of SiC power module for high switching frequency operation. IEICE Electronics Express, 2010, 7(14):1008.
DOI URL |
[3] | JOHNSON R W, PALMER M, WANG C, et al. Packaging materials and approaches for high temperature SiC power devices. Advancing Microelectronics, 2004, 31(1):8. |
[4] |
MCCLUSKEY F P, DASH M, WANG Z, et al. Reliability of high temperature solder alternatives. Microelectronics Reliability, 2006, 46(9/10/11): 1910.
DOI URL |
[5] | 中华人民共和国科学技术部. “十三五”材料领域科技创新专项规划(2017), 306082017496. 北京: 中华人民共和国科学技术部, 2017: 1-29. |
[6] | XIE M, GAN Y, WANG H. Research on the strategy of new material power for 2035. Strategic Study of CAE, 2020, 22(5):1. |
[7] | MA Y, TU X J. Global IC industry: growth, migration and remodeling. Information and Communications Technology and Policy, 2022, 48(5):68. |
[8] | HUANG F L, ZHU H. Semiconductor integrated circuit business unit management strategy. Manager Journal, 2020, 8: 58. |
[9] | WANG X. Application status and development trend of semiconductor materials. Lamps & Lighting, 2022, 1: 67. |
[10] | CAO J, ZHANG Z Q. Advances in silicon carbide power module packaging technology. Applications of IC, 2018, 35(8):20. |
[11] | WANG R D. Advanced packaging promotes new development of semiconductor industry. China Integrated Circuit, 2022, 31(4):26. |
[12] | WU Y B, DAI X P, WANG Y G, et al. Research progress on advanced interconnect technologies in IGBT power module packaging. High Power Converter Technology, 2015 (2): 6. |
[13] | YUAN G Z. Micro-scale mechanical properties of lead-free solder joint interconnect interfaces for electronic packaging. Taiyuan: Master's Thesis, Taiyuan University of Technology, 2016. |
[14] | XU H Y, XU H Y, ZANG L K, et al. Advances in low-temperature sintered copper-based electronic pastes for power device chip interconnects. Electronic Components & Materials, 2022, 41(1):9. |
[15] | DONG Z Z. Research on some key issues of low-power silicon carbide integrated modules. Hangzhou: Master's Thesis, Zhejiang University, 2022. |
[16] | HARTNETT A, BUERKI S.Process and reliability advantages of AuSn eutectic die-attach. IMAPS 2009 International Symposium on Microelectronics. San Jose, CA(US), 2009: 470-474. |
[17] | HUMSTON G, JACOBSON D. Principles of soldering and brazing. Materials Park, OH, USA: ASM International, 1993. |
[18] | FAN J L. Controlled preparation and low-temperature sintering of silver/copper nanoparticles and their interconnection applications in microelectronic packaging. Shenzhen: Doctoral dissertation, University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), 2020. |
[19] | SHEN B W, LIU G H, GAO L Q, et al. Research progress of new low temperature lead-free solder. Precious Metals, 2022, 43(S1):1. |
[20] | GANESAN SANKA, PECHT MICHAEL. Lead-free electronics. Hoboken N.J.: Wiley-Interscience, 2006. |
[21] |
ZHANG H W, MINTER J, LEE N C. A brief review on high- temperature, Pb-free die-attach materials. Journal of Electronic Materials, 2019, 48(1):201.
DOI |
[22] |
MANIKAM V R, CHEONG K Y. Die attach materials for high temperature applications: a review. IEEE Transactions on Components Packaging and Manufacturing Technology, 2011, 1(4):457.
DOI URL |
[23] | VIVEK C, JESPER H, JOHN H. Design of lead-free candidate alloys for high-temperature soldering based on the Au-Sn system. Materials and Design, 2010, 31: 4638. |
[24] | HARPSTER T J, NAJAFI K. Field-assisted bonding of glass to Si-Au eutectic solder for packaging applications. 16th IEEE Annual International Conference on Micro Electro Mechanical Systems. Kyoto, Japan: IEEE, 2003. |
[25] | DREVIN B A, BADAWI F, LACROIX F, et al. Investigation of die attach for SiC power device for 300 ℃ applications. 9th European Conference on Silicon Carbide and Related Materials (ECSCRM 2012). Saint Petersburg, Russia: Trans Tech Publications Ltd, 2012. |
[26] | HASSAM S, ROGEZ J, BAHARI Z. Experimental phase diagram of the AuSb-InSb section in the Au-In-Sb system. Journal of Chemical Thermodynamics, 2014, 70: 168. |
[27] |
HUANG M L, HUANG F F, YANG Y C. Composition design of Sn-rich Sn-Au-Ag solders using cluster-plus-glue-atom model. Journal of Materials Science: Materials in Electronics, 2017, 28(15):11192.
DOI URL |
[28] | LAU B L, HAN Y, ZHANG H Y, et al. Development of fluxles bonding using deposited gold-indium multi-layer composite for heterogeneous silicon micro-cooler stacking. IEEE 16th Electronics Packaging Technology Conference (EPTC). Marina Bay Sands, Singapore: IEEE, 2014. |
[29] | KOSTOV A, GOMIDZELOVIC L, MILOSAVLJEVIC A, et al. Thermodynamic characterization of solder Au-Ga alloys. Materials Chemistry and Physics, 2020, 241: 122278. |
[30] | XU J C, WU M F, PU J, et al. Novel Au-based solder alloys: a potential answer for electrical packaging problem. Advances in Materials Science and Engineering, 2020, 2020: 4969647. |
[31] |
LEONARD B. Semiconductor joining by the solid-liquid-interdiffusion (SLID) proces. Journal of The Electrochemical Society, 1966, 113(12):1282.
DOI URL |
[32] |
JUNG D H, SHARMAL A, MAYER M, et al. A review on recent advances in transient liquid phase (TLP) bonding for thermoelectric power module. Reviews on Advanced Materials Science, 2018, 53(2):147.
DOI URL |
[33] | ROH M H, NISHIKAWA H, JUNG J P, et al. Trasient liquid phase bonding for power semiconductor. The Korean Microelectronics and Packaging Society, 2017, 24(1):27. |
[34] |
MITTAL J, LIN K L. Diffusion of Cu and interfacial reactions during reflow of Sn-8.5Zn-0.5Ag-0.01Al-0.1Ga alloy on Ni/Cu substrate. Journal of Materials Research, 2012, 27(8):1142.
DOI URL |
[35] |
YU C C, SU P C, BAI S J, et al. Nickel-tin solid-liquid inter- diffusion bonding. International Journal of Precision Engineering and Manufacturing, 2014, 15(1):143.
DOI URL |
[36] |
HSU H H, HUANG Y T, HUANG S Y, et al. Evolution of the intermetallic compounds in Ni/Sn-2.5Ag/Ni microbumps for three-dimensional integrated circuits. Journal of Electronic Materials, 2015, 44(10):3888.
DOI URL |
[37] |
SHIH W L, YANG T L, CHUANG H Y, et al. Inhibition of gold embrittlement in micro-joints for three-dimensional integrated circuits. Journal of Electronic Materials, 2014, 43(11):4262.
DOI URL |
[38] |
CAO Y H, NING W G, LUO L. Wafer-level package with simultaneous TSV connection and cavity hermetic sealing by solder bonding for MEMS device. IEEE Transactions on Electronics Packaging Manufacturing, 2009, 32(3):125.
DOI URL |
[39] |
HANG C J, TIAN Y H, ZHANG R, et al. Phase transformation and grain orientation of Cu-Sn intermetallic compounds during low temperature bonding process. Journal of Materials Science: Materials in Electronics, 2013, 24(10):3905.
DOI URL |
[40] | YANG T L, AOKI T, MATSUMOTO K, et al. Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Materialia, 2016, 113: 90. |
[41] | FENG J Y, HANG C J, TIAN Y H, et al. Growth kinetics of Cu6Sn5 intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current. Scientific Reports, 2018, 8: 1175. |
[42] | LIU B L, TIAN Y H, WANG C X, et al. Ultrafast formation of unidirectional and reliable Cu3Sn-based intermetallic joints assisted by electric current. Intermetallics, 2017, 80: 26. |
[43] | ZHAO H Y, LIU J H, LI Z L, et al. Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process. Materials Letters, 2017, 186: 283. |
[44] |
ZHAO H Y, LIU J H, LI Z L, et al. A comparative study on the microstructure and mechanical properties of Cu6Sn5 and Cu3Sn joints formed by TLP soldering with/without the assistance of ultrasonic waves. Metallurgical and Materials Transactions A, 2018, 49(7):2739.
DOI |
[45] |
CAIN S R, WILCOX J R, VENKATRAMAN R. A diffusional model for transient liquid phase bonding. Acta Materialia, 1997, 45(2):701.
DOI URL |
[46] |
MARAUSKA S, CLAUS M, LISEC T, et al. Low temperature transient liquid phase bonding of Au/Sn and Cu/Sn electroplated material systems for MEMS wafer-level packaging. Microsystem Technologies, 2013, 19(8):1119.
DOI URL |
[47] |
BOBZIN K, BAGCIVAN N, ZHAO L D, et al. Development of new transient liquid phase system Au-Sn-Au for microsystem technology. Frontiers of Mechanical Engineering in China, 2010, 5(4):370.
DOI URL |
[48] |
TOLLEFSEN T A, LARSSON A, TAKLO M M V, et al. Au-Sn SLID bonding: a reliable HT interconnect and die attach technology. Metallurgical and Materials Transactions B, 2013, 44(2):406.
DOI URL |
[49] |
RAUTIAINEN A, XU H, OSTERLUND E, et al. Microstructural characterization and mechanical performance of wafer-level SLID bonded Au-Sn and Cu-Sn seal rings for MEMS encapsulation. Journal of Electronic Materials, 2015, 44(11):4533.
DOI URL |
[50] |
LIN W P, LEE C C. Fluxless bonding of bismuth telluride chips to Alumina using Ag-In system for high temperature thermoelectric devices. IEEE Transactions on Components, Packaging, and Manufacturing Technology, 2011, 1(9):1311.
DOI URL |
[51] |
LI J F, AGYAKWA P A, JOHNSON C M. Kinetics of Ag3Sn growth in Ag-Sn-Ag system during transient liquid phase soldering process. Acta Materialia, 2010, 58(9):3429.
DOI URL |
[52] |
GOLLAS B, ALBERING J H, SCHMUT K, et al. Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low temperature isothermal diffusion soldering. Intermetallics, 2008, 16(8):962.
DOI URL |
[53] |
LIS A, LEINENBACH C. Effect of process and service conditions on TLP-bonded components with (Ag,Ni-)Sn interlayer combinations. Journal of Electronic Materials, 2015, 44(11):4576.
DOI URL |
[54] | SHAO H K, WU A P, BAO Y D, et al. Microstructure characterization and mechanical behavior for Ag3Sn joint produced by foil- based TLP bonding in air atmosphere. Materials Science & Engineering A, 2017, 680: 221. |
[55] |
ZHANG W, RUYTHOOREN W. Study of the Au/In reaction for transnsient liquid-phase bonding and 3D chip stackaging. Journal of Electronic Materials, 2008, 37(8):1095.
DOI URL |
[56] | YOON J W, LEE B S. Initial interfacial reactions of Ag/In/Ag and Au/In/Au joints during transient liquid phase bonding. Microelectronic Engineering, 2018, 201: 6. |
[57] | CHOI W K, PREMACHANDRAN C S, CHIEW O S, et al. Development of novel intermetallic joints using thin film indium-based solder by low temperature bonding technology for 3D IC stacking. 2009 IEEE 59th Electronic Components and Technology Conference, San Diego, CA, USA, 2009: 333-338. |
[58] |
LIN J C, HUANG L W, JANG G Y, et al. Solid-liquid interdiffusion bonding between In-coated silver thick films. Thin Solid Films, 2002, 410 (1/2): 212.
DOI URL |
[59] | LEE C K, YU A B, YAN L L, et al. Characterization of intermediate In/Ag layers of low temperature fluxless solder based wafer bonding for MEMS packaging. Sensors and Actuators A: Physical, 2009, 154: 85. |
[60] | MOKHTARI O. A review: formation of voids in solder joint during the transient liquid phase bonding process-causes and solutions. Microelectronics Reliability, 2019, 98: 95. |
[61] | ZHANG W, YAO J J, ZHAN K, et al. Conductive adhesive research progress. Science & Technology Review, 2018, 36(10):56. |
[62] | LI Y, LU D, WONG C P.Electrical conductive adhesives with nanotechnologies. New York: Springer New York, NY, 2010. |
[63] | LI S H. Gold conductive adhesive. China Adhesives, 1998(6): 33. |
[64] | WANG Y H, HUANG A, XIE H, et al. Isotropical conductive adhesives with very-long silver nanowires as conductive fillers. Journal of Materials Science: Materials Electronics, 2017, 28: 10. |
[65] | XIONG S H, YANG R C, WU D, et al. The effect of silver powder morphology and size on the performance of conductive adhesives. Electronic Components & Materials, 2005, 24(8):14. |
[66] | WAN C, WANG H Q, DU B, et al. The effect of silver powder morphology and surface treatment on the performance of conductive adhesives. Electronics Process Technology, 2011, 32(2):72. |
[67] | QIAO W Y, BAO H, LI X H, et al. Research on electrical conductive adhesives filled with mixed filler. International Journal of Adhesion and Adhesives, 2014, 48: 159. |
[68] | WU H P, WU X J, GE M Y, et al. Effect analysis of filler sizes on percolation threshold of isotropical conductive adhesives. Composites Science and Technology, 2007, 67: 1116. |
[69] | YIM M J, LI Y, MOON K S, et al. Oxidation prevention and electrical property enhancement of copper-filled isotropically conductive adhesives. Journal of Electronic Materials, 2007, 36(10):1342. |
[70] | LIU Y X, WANG X D, GU Y X, et al. Development of copper powder-added conductive adhesive. China Adhesives, 2008, 17(11):27. |
[71] | PENG Y H, YANG C H, CHEN K T, et al. Study on synthesis of ultrafine Cu-Ag core-shell powders with high electrical conductivity. Applied Surface Science, 2012, 263: 38. |
[72] |
HO L N, NISHIKAWA H, TAKEMOTO T. Effect of different copper fillers on the electrical resistivity of conductive adhesives. Journal of Materials Science Materials in Electronics, 2011, 22(5):538.
DOI URL |
[73] | FAN Y Q, GU Y W, XIA X Y. Preparation and properties of fibrous copper powder conductive filler. Electronic Components & Materials, 2014, 33(8):25. |
[74] | WANG J H, MIN H L. Research on nickel powder conductive acrylate pressure sensitive adhesive. Insulating Materials, 2006(5): 4. |
[75] |
PU N W, PENG Y Y, WANG P C, et al. Application of nitrogen- doped graphene nanosheets in electrically conductive adhesives. Carbon, 2014, 67(2):449.
DOI URL |
[76] |
MARCQ F, DEMONT P, MONFRAIX P, et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives. Microelectronics Reliability, 2011, 51(7):1230.
DOI URL |
[77] |
YIM B S, KIM J M. Characteristics of isotropically conductive adhesive (ICA) filled with carbon nanotubes (CNTs) and low-melting-point alloy fillers. Materials Transactions, 2010, 51(12):2329.
DOI URL |
[78] | WU H P, WU X J, LIU J F, et al. Properties of carbon nanotube- filled isotropic conductive adhesives. Acta Materiae Compositae Sinica, 2006, 23(2):9. |
[79] |
AMOLI B M, TRINIDAD J, HU A, et al. Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: the effect of NPs sintering on the electrical conductivity improvement. Journal of Materials Science Materials in Electronics, 2015, 26(1):590.
DOI URL |
[80] | MA M Z, MA H R, ZENG J F, et al. In situ hydrothermal synthesis of graphene-based nanosilver and its application in conductive adhesives. Journal of Shihezi University (Natural Science), 2017, 35(1):12. |
[81] | SU Y, DAI Y Q, LIAO B, et al. Research progress of conductive filler for conductive adhesive. China Adhesives, 2018, 27(10):52. |
[82] |
BEHNAM M A, HU A M, ZHOU N Y, et al. Recent progresses on hybrid micro-nano filler systems for electrically conductive adhesives (ECAs) applications. Journal of Materials Science: Materials in Electronics, 2015, 26(7):4730.
DOI URL |
[83] | ZHANG W F. Pressureless sintering of micrometer silver pastes for electrical connections and their properties. Fuzhou: Master's Thesis, Fujian Normal University, 2019. |
[84] | ZUO X. Preparation and performance study of high thermal conductive adhesive. China Adhesives, 2022, 31(10):47. |
[85] |
ZHANG J G, LIANG M H, HU Q, et al. Cu@Ag nanoparticles doped micron-sized Ag plates for conductive adhesive with enhanced conductivity. International Journal of Adhesion and Adhesives, 2020, 102(1):102657.
DOI URL |
[86] | YANG J L, DONG C C, LUO J. Advances in low-temperature sintering of nanosilver in novel power module packages. Materials Reports, 2019, 33(S2):360. |
[87] |
SCHWARZBAUER H, KUHNERT R. Novel large area joining technique for improved power device performance. IEEE Transactions on Industry Applications, 1991, 27(1):93.
DOI URL |
[88] | HIROSHI N, TOMOAKJ H, TADASHI T. Effects of joining conditions on joint strength of Cu/Cu joint using Cu nanoparticle paste. The Open Surface Science Journal, 2011, 3: 60. |
[89] | HERRING C. Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics, 1950, 21(5):4375. |
[90] |
PENG Y, MOU Y, LIU J X, et al. Fabrication of high-strength Cu-Cu joint by low-temperature sintering micron-nano Cu composite paste. Journal of Materials Science: Materials in Electronics, 2020, 31(11):8456.
DOI |
[91] |
GAO Y, ZHANG H, LI W L, et al. Die bonding performance using bimodal Cu particle paste under different sintering atmospheres. Journal of Electronic Materials, 2017, 46(7):4575.
DOI URL |
[92] |
MASTUDA T, YAMAGIWA D, FURUSAWA H, et al. Reduction behavior of surface oxide on submicron copper particles for pressureless sintering under reducing atmosphere. Journal of Electronic Materials, 2021, 51(1):1.
DOI |
[93] |
LI Y, QI T K, CHEN M, et al. Mixed ink of copper nanoparticles and copper formate complex with low sintering temperatures. Journal of Materials Science: Materials in Electronics, 2016, 27(11):11432.
DOI URL |
[94] |
JEONG S, WOO K, KIM D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Advanced Functional Materials, 2008, 18(5):679.
DOI URL |
[95] | BHOGARAJU S K, CONTI F, KOTADIA H R, et al. Novel approach to copper sintering using surface enhanced brass micro flakes for microelectronics packaging. Journal of Alloys and Compounds, 2020, 844: 156043. |
[96] | GAO Y, LI W L, CHEN C T, et al. Novel copper particle paste with self-reduction and self-protection characteristics for die attachment of power semiconductor under a nitrogen atmosphere. Materials and Design, 2018, 160: 1265. |
[97] |
MOU Y, LIU J X, CHENG H, et al. Facile preparation of self- reducible Cu nanoparticle paste for low temperature Cu-Cu bonding. JOM, 2019, 71(9):3076.
DOI |
[98] |
WANG X C, ZHANG Z Q, FENG Y Y, et al. Anti-oxidative copper nanoparticle paste for Cu-Cu bonding at low temperature in air. Journal of Materials Science: Materials in Electronics, 2021, 33(2):817.
DOI |
[99] |
JANG S, SEO Y, CHOI J, et al. Sintering of inkjet printed copper nanoparticles for flexible electronics. Scripta Materialia, 2010, 62(5):258.
DOI URL |
[100] | XIANG D L, HIROSHI N. Improved joint strength with sintering bonding using microscale Cu particles by an oxidation-reduction process. IEEE 66th Electronic Components and Technology Conference, Las Vegas, USA, 2016: 455-460. |
[101] |
YAMAKAWA T, TAKEMOTO T, SHIMODA M, et al. Influence of joining conditions on bonding strength of joints: efficacy of low-temperature bonding using Cu nanoparticle paste. Journal of Electronic Materials, 2013, 42(6):1260.
DOI URL |
[102] |
LI J L, XU Y, ZHAO X L, et al. Enhancement and mechanism of copper nanoparticle sintering in activated formic acid atmosphere at low temperature. ECS Journal of Solid State Science and Technology, 2021, 10(5):054004.
DOI |
[103] |
LI J J, YU X, SHI T L, et al. Low-temperature and low-pressure Cu-Cu bonding by highly sinterable Cu nanoparticle paste. Nanoscale Research Letters, 2017, 12(1):255.
DOI PMID |
[104] | LIU J D, CHEN H T, JI H J, et al. Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Applied Materials & Interfaces, 2016, 8(48):33289. |
[105] | PA X, ZHOU J C, ZHANG J G, et al. Study on preparation and application of nano-copper powder for power semiconductor device packaging. China International Forum on Solid State Lighting & International Forum on Wide Bandgap Semiconductors China, Shenzhen, 2019: 54-58. |
[106] | KOBAYASHI Y, SHIROCHI T, YASUDA Y, et al. A metal-metal bonding process using metallic copper nanoparticles prepared in aqueous solution. International Journal of Adhesion & Adhesives, 2014, 3(2):114. |
[107] |
LI J J, LIANG Q H, FAN T L, et al. Design of Cu nanoaggregates composed of ultra-small Cu nanoparticles for Cu-Cu thermocompression bonding. Journal of Alloys and Compounds, 2019, 772(2019):793.
DOI URL |
[108] |
QI T K, WANG X C, YANG J F, et al. Rapid low temperature sintering in air of copper submicron particles with synergistic surface-activation and anti-oxidative protection. Journal of Materials Science: Materials in Electronics, 2019, 30(13):12669.
DOI |
[109] |
QI T K, ZHANG Z Q, LI Y, et al. A low temperature self- reducible copper hydroxide amino-alcohol complex catalyzed by formic acid for conductive copper films. Journal of Materials Chemistry C, 2018, 6(42):11320.
DOI URL |
[110] |
AKIHIRO Y, YOHEI T, INDRA W F. Synthesis of copper conductive film by low-temperature thermal decomposition of coppereaminediol complexes under an air atmosphere. Materials Chemistry and Physics, 2014, 148(1/2):299.
DOI URL |
[111] |
KIM M I, LEE J H. Die attachment by extremely fast pressure-assisted sintering of 200 nm Cu particles. Electronic Materials Letters, 2021, 17(3):286.
DOI |
[112] | YANG Z, SADIE C S, MARK G, et al. High bond strength Cu joints fabricated by rapid and pressureless in situ reduction- sintering of Cu nanoparticles. Materials Letters, 2020, 276: 128260. |
[113] |
DENG D Y, CHENG Y R, JIN Y X, et al. Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. Journal of Materials Chemistry, 2012, 22(45):23989.
DOI URL |
[114] | MOU Y, CHENG H, PENG Y, et al. Fabrication of reliable Cu-Cu joints by low temperature bonding isopropanol stabilized Cu nanoparticles in air. Materials Letters, 2018, 229: 353. |
[115] | MOU Y, PENG Y, ZHANG Y, et al. Cu-Cu bonding enhancement at low temperature by using carboxylic acid surface-modified Cu nanoparticles. Materials Letters, 2018, 227: 179. |
[116] |
SUGIYAMA T, KANZAKI M, ARAKAWA R, et al. Low- temperature sintering of metallacyclic stabilized copper nanoparticles and adhesion enhancment of conductive copper film to a polyimide substrate. Journal of Materials Science: Materials in Electronics, 2016, 27(7):7540.
DOI URL |
[117] |
GAO Y, LI W L, ZHANG H, et al. Size-controllable synthesis of bimodal Cu particles by polyol method and their application in die bonding for power devices. IEEE Transactions on Components Packaging and Manufacturing Technology, 2018, 8(12): 2190.
DOI URL |
[118] |
MOU Y, WANG H, PENG Y, et al. Enhanced heat dissipation of high-power light-emitting diodes by Cu nanoparticle paste. IEEE Electron Device Letters, 2019, 40(6):949.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | WANG Hao, LIU Xuechao, ZHENG Zhong, PAN Xiuhong, XU Jintao, ZHU Xinfeng, CHEN Kun, DENG Weijie, TANG Meibo, GUO Hui, GAO Pan. Performance of Lateral 4H-SiC Photoconductive Semiconductor Switches by Extrinsic Backside Trigger [J]. Journal of Inorganic Materials, 2024, 39(9): 1070-1076. |
[4] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[5] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[6] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[7] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[8] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[9] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[10] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[11] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[12] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[13] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[14] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[15] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||