Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1031-1043.DOI: 10.15541/jim20230116
Special Issue: 【能源环境】钙钛矿(202409); 【能源环境】太阳能电池(202409)
• REVIEW • Previous Articles Next Articles
Received:
2023-03-07
Revised:
2023-05-25
Published:
2023-09-20
Online:
2023-06-16
Contact:
TAN Zhan’ao, professor. E-mail: tanzhanao@mail.buct.edu.cnAbout author:
DONG Yiman (1996-), female, PhD candidate. E-mail: dongyiman1012@126.com
Supported by:
CLC Number:
DONG Yiman, TAN Zhan’ao. Research Progress of Recombination Layers in Two-terminal Tandem Solar Cells Based on Wide Bandgap Perovskite[J]. Journal of Inorganic Materials, 2023, 38(9): 1031-1043.
Fig. 2 Structures and device performance of 2T tandem solar cells based on thin metal RLs (a) Device structure and cross-section SEM image of perovskite-organic 2T tandem solar cell with Ag as the RL[12]; (b) Device structure of perovskite-organic 2T tandem solar cell with Ag nanoparticles as RL and the corresponding simulation result of the light field distribution[30]; (c) Device structure of perovskite-perovskite 2T tandem solar cell with Au as RL(left), J-V curves of devices without and with ultrathin Au layer as RL(middle), and J-V curves of a large-area device (1.05 cm2) with inset showing the digital photo of the large-area device (right)[32] BCP: Bathocuproine
Fig. 3 Photoelectric properties of ITO nanocrystals and schematic diagram of preparation process of corresponding 2T tandem solar cell (a) X-ray diffraction pattern of ITO nanocrystals[37]; (b) Dark J-V curves of devices based on ICLs without RL, with Au as RL, and with ITO as RL[37]; (c) Optical absorptance curves of ICLs without RL, with Au and ITO as RL[37]; (d) Schematic diagram of preparation process of the perovskite-silicon tandem solar cell[39]. E-NiOx: NiOx nanocrystals which are dispersible in ethanol; AR: Anti-reflection film; SHJ: Silicon heterojunction. Colorful figures are available on website
Fig. 4 IZO as RL in 2T tandem solar cells and the corresponding characterization[40] (a) Schematic diagram showing the p-i-n structured perovskite-organic 2T tandem solar cells (The dashed grey frame indicates the ICL region and the design of ICLs with four types of RL are depicted in the frame); (b) J-V curves (reverse scan) of devices using IZO-based ICLs with different thicknesses; Transmission electron microscopy image of the (c) 4 nm-thickness IZO and (d) 1 nm-thickness Ag on BCP. CRL: Carrier recombination layer; OPV: Organic photovoltaic. Colorful figures are available on website
Fig. 5 Perovskite-perovskite 2T tandem solar cell and corresponding device performance before and after the simplification of ICL[44] (a) Schematic diagrams of 2T tandem solar cells based on typical structured ICLs of C60/SnO2−x/ITO/PEDOT:PSS (left) and the simplified ICLs of C60/SnO2−x (right); (b) J-V curves of devices based on various ICLs. NBG: Narrow bandgap; WBG: Wide bandgap. Colorful figures are available on website
Fig. 6 InOx RL-based 2T tandem solar cells and their photoelectric properties (a) Schematic of perovskite-organic 2T tandem solar cell with InOx or Ag as RL[45]; (b) J-V characteristics of tandem solar cells with varied thickness (number of ALD cycles) of InOx layers[45]; (c) Optical transmittance of InOx, SnOx/InOx/MoOx, and SnOx/1 nm Ag/MoOx[45]; (d) Resulting External Quantum Efficiency (EQE) spectra of the organic rear subcell of tandem solar cells with InOx or Ag as RL[45]. Colorful figures are available on website
Fig. 7 2T tandem solar cells with PEDOT:PSS or GO as RL (a) Schematic of the as-prepared 2T bottom-up perovskite-perovskite tandem solar cell and chemical structures of spiro-OMeTAD, PEDOT:PSS, PEI and PCBM[47]; (b) Schematic diagram and long-term photo-stability for the perovskite-perovskite tandem solar cell[24]
Front subcell | ICL | Rear subcell | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CsPbI2Br | MoO3/Ag/PFN-Br | PTB7-Th:IEICO-4F | 1.82 | 13.20 | 71.68 | 17.24 | [ | ||||
FA0.8MA0.02Cs0.18Pb1.8Br1.2 | C60/BCP/Ag/MoOx | PBDBT-2F:Y6:PC71BM | 1.90 | 13.05 | 83.1 | 20.6 | [ | ||||
CsPbI2.1Br0.9 | MoO3/Ag/ZnO | PM6:Y6 | 1.89 | 12.77 | 74.81 | 18.06 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6-BO | 1.96 | 13.30 | 80.8 | 21.1 | [ | ||||
FA0.6MA0.4Pb(I0.6Br0.4)3 | C60/BCP/Ag/MoOx | PTB7-Th: BTPV-4Cl-eC9 | 1.88 | 15.70 | 74.6 | 15.84 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6 | 2.10 | 13.09 | 75.1 | 20.6 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | D18:Y6 | 2.22 | 12.68 | 76.0 | 21.4 | [ | ||||
FA0.8Cs0.2Pb(I0.7Br0.3)3 | C60/BCP/Ag/MoOx/ITO/ PEDOT:PSS | (FASnI3)0.6(MAPbI3)0.4:Cl | 1.92 | 14.00 | 78.1 | 21.0 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 1.97 | 15.6 | 81.0 | 24.8 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.01 | 16.0 | 79.8 | 25.6 | [ | ||||
MA0.96FA0.1PbI2Br(SCN)0.12 | PCBM/BCP/Au/MoO3 | PM6:CH1007 | 1.96 | 13.8 | 78.4 | 21.2 | [ | ||||
1.77 eV perovskite | C60/ALD SnOx/Au/PEDOT:PSS | 1.23 eV Perovskite | 1.95 | 15.8 | 75 | 23.1 | [ | ||||
Wide Eg perovskite | PCBM/BCP/Au/MoO3 | PM6:Y6 | 1.94 | 13.12 | 78.7 | 20.03 | [ | ||||
FA0.8Cs0.2PbI1.95Br1.05 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.00 | 15.8 | 78.3 | 24.7 | [ | ||||
FA0.7Cs0.3PbI2.1Br0.9 | LiF/C60/SnO2/Au/PEDOT: PSS | (FASnI3)0.6(MAPbI3)0.4 | 2.12 | 15.03 | 80.1 | 25.5 | [ | ||||
FA0.8Cs0.2Pb(I0.62Br0.38)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.03 | 16.5 | 79.9 | 26.7 | [ | ||||
FA0.8Cs0.2PbI1.8Br1.2 | C60/ALD SnO2/Au/PEDOT:PSS | PM6:Y6 | 2.07 | 13.92 | 77.29 | 22.29 | [ | ||||
1.75 eV perovskite | LiF/C60/ALD SnOx/Au/PEDOT:PSS | FA0.6MA0.4Sn0.6Pb0.4I3 | 2.20 | 15.1 | 81.6 | 27.2 | [ | ||||
Cs0.2FA0.8Pb(I0.6Br0.4)3 | C60/ALD SnOx/Au/PEDOT:PSS | Cs0.05FA0.7MA0.25Pb0.5Sn0.5I3 | 2.19 | 15.05 | 83.1 | 27.4 | [ | ||||
FA0.8Cs0.2PbI2.1Br0.9 | LiF/C60/ALD SnO2/Au | FA0.6MA0.3Cs0.1Pb0.5Sn0.5I3 | 1.94 | 12.9 | 85.8 | 21.5 | [ | ||||
CsPbI2.2Br0.8 | MoO3/Au/ZnO | PM6:CH1007 | 2.10 | 13.90 | 76.86 | 22.43 | [ | ||||
FA0.83Cs0.17Pb(I0.5Br0.5)3 | SnO2/ZTO/ITO/PEDOT:PSS | FA0.75Cs0.25Sn0.5Pb0.5I3 | 1.66 | 14.5 | 70 | 16.9 | [ | ||||
MA0.9Cs0.1Pb(I0.6Br0.4)3 | C60/Bis-C60/ITO/PEDOT: PSS | MAPb0.5Sn0.5I3 | 1.98 | 12.7 | 73 | 18.5 | [ | ||||
Wide Eg perovskite | nc-SiOx:H/ITO/PTAA | Silicon | 1.76 | 18.5 | 78.5 | 25.5 | [ | ||||
Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.80 | 17.8 | 79.4 | 25.4 | [ | ||||
Cs0.1MA0.9Pb(I0.9Br0.1)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.82 | 19.2 | 75.3 | 26.2 | [ | ||||
FA0.8Cs0.2 Pb(I0.6Br0.4)3 | C60/ITO NCs/E-NiOx | FA0.8Cs0.2Pb0.5Sn0.5I3 | 1.90 | 15.4 | 80.4 | 23.5 | [ | ||||
Cs0.2FA0.8PbI1.8Br1.2 | C60/ALD SnO2/ITO NCs | FAPb0.5Sn0.5I3 | 2.03 | 16.2 | 80.3 | 26.3 | [ | ||||
Cs0.1(MA0.17FA0.83)0.9Pb (I0.83Br0.17)3 | a-Si:H(n)/ITO/NiOx | Silicon | 1.75 | 15.5 | 73.6 | 20.0 | [ | ||||
Wide Eg perovskite | nc-SiOx(n)/ITO/NiOx/2- PACz | Silicon | 1.79 | 20.11 | 79.95 | 28.84 | [ | ||||
Wide Eg perovskite | a-Si:H(n)/ITO/NiOx | Silicon | 1.82 | 16.31 | 78.32 | 23.31 | [ | ||||
Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 | nc-SiOx:H(n)/ITO | Silicon | 1.90 | 19.54 | 80.90 | 29.83 | [ | ||||
Wide Eg perovskite | a-Si:H(i/n)/ITO/NiO | Silicon | 1.85 | 19.8 | 78.9 | 28.9 | [ | ||||
MAPbI3 | p-aSi/IZO/PCBM | Silicon | 1.69 | 15.8 | 79.9 | 21.4 | [ | ||||
1.79 eV perovskite | C60/BCP/IZO/MoOx | PM6:Y6:PC71BM | 2.06 | 14.83 | 77.2 | 23.6 | [ | ||||
FA0.78Cs0.22Pb(I0.85Br0.15)3 | Passivated ETL/IZO/SAM | Silicon | 1.91 | 19.29 | 78.3 | 28.81 | [ | ||||
Cs0.05MA0.14FA0.81Pb(I0.8Br0.2)3 | N doped nc-Si/IZO/2-PACz | Silicon | 1.85 | 19.7 | 77.9 | 28.4 | [ | ||||
Wide Eg Perovskite | Poly-Si(n+)IZO | TOPCon | 1.80 | 19.4 | 81.64 | 28.49 | [ | ||||
Cs0.4FA0.6PbI1.95Br1.05 | (n+)C60/SnO1.76 | Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3 | 2.03 | 15.2 | 79.7 | 24.6 | [ | ||||
FA0.8Cs0.2Pb(I0.5Br0.5)3 | SiOx/InOx/MoOx | PM6:Y6:PC61BM | 2.15 | 14.0 | 80 | 24.0 | [ | ||||
MAPbI3 | Spiro-OMeTAD/PEDOT: PSS/PEI | MAPbI3 | 1.89 | 6.61 | 56 | 7.0 | [ | ||||
PBSeDTEG8:PC61BM | TiO2/PEDOT:PSS-PH500/ PEDOT:PSS 4083 | MAPbI3 | 1.52 | 10.05 | 67 | 10.23 | [ | ||||
MAPbBr3 | Spiro-OMeTAD/PEDOT: PSS/C60 | MAPbI3 | 1.96 | 6.40 | 41 | 5.1 | [ | ||||
Cs0.4FA0.6PbI2Br | C60/SnO2/Graphene oxide/PEDOT:PSS | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.02 | 15.8 | 79.3 | 25.3 | [ | ||||
Cs0.4FA0.6PbI2.16Br0.84 | C60/SnO2-x/Graphene oxide/SnOCl | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.05 | 16.2 | 79.3 | 26.3 | [ |
Table 1 Summary of structure and performance of 2T tandem solar cells
Front subcell | ICL | Rear subcell | VOC/V | JSC/(mA·cm-2) | FF/% | PCE/% | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
CsPbI2Br | MoO3/Ag/PFN-Br | PTB7-Th:IEICO-4F | 1.82 | 13.20 | 71.68 | 17.24 | [ | ||||
FA0.8MA0.02Cs0.18Pb1.8Br1.2 | C60/BCP/Ag/MoOx | PBDBT-2F:Y6:PC71BM | 1.90 | 13.05 | 83.1 | 20.6 | [ | ||||
CsPbI2.1Br0.9 | MoO3/Ag/ZnO | PM6:Y6 | 1.89 | 12.77 | 74.81 | 18.06 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6-BO | 1.96 | 13.30 | 80.8 | 21.1 | [ | ||||
FA0.6MA0.4Pb(I0.6Br0.4)3 | C60/BCP/Ag/MoOx | PTB7-Th: BTPV-4Cl-eC9 | 1.88 | 15.70 | 74.6 | 15.84 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | PM6:Y6 | 2.10 | 13.09 | 75.1 | 20.6 | [ | ||||
CsPbI2Br | MoO3/Ag/PFN-Br | D18:Y6 | 2.22 | 12.68 | 76.0 | 21.4 | [ | ||||
FA0.8Cs0.2Pb(I0.7Br0.3)3 | C60/BCP/Ag/MoOx/ITO/ PEDOT:PSS | (FASnI3)0.6(MAPbI3)0.4:Cl | 1.92 | 14.00 | 78.1 | 21.0 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 1.97 | 15.6 | 81.0 | 24.8 | [ | ||||
FA0.8Cs0.2Pb(I0.6Br0.4)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.01 | 16.0 | 79.8 | 25.6 | [ | ||||
MA0.96FA0.1PbI2Br(SCN)0.12 | PCBM/BCP/Au/MoO3 | PM6:CH1007 | 1.96 | 13.8 | 78.4 | 21.2 | [ | ||||
1.77 eV perovskite | C60/ALD SnOx/Au/PEDOT:PSS | 1.23 eV Perovskite | 1.95 | 15.8 | 75 | 23.1 | [ | ||||
Wide Eg perovskite | PCBM/BCP/Au/MoO3 | PM6:Y6 | 1.94 | 13.12 | 78.7 | 20.03 | [ | ||||
FA0.8Cs0.2PbI1.95Br1.05 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.00 | 15.8 | 78.3 | 24.7 | [ | ||||
FA0.7Cs0.3PbI2.1Br0.9 | LiF/C60/SnO2/Au/PEDOT: PSS | (FASnI3)0.6(MAPbI3)0.4 | 2.12 | 15.03 | 80.1 | 25.5 | [ | ||||
FA0.8Cs0.2Pb(I0.62Br0.38)3 | C60/ALD SnO2/Au/PEDOT:PSS | FA0.7MA0.3Pb0.5Sn0.5I3 | 2.03 | 16.5 | 79.9 | 26.7 | [ | ||||
FA0.8Cs0.2PbI1.8Br1.2 | C60/ALD SnO2/Au/PEDOT:PSS | PM6:Y6 | 2.07 | 13.92 | 77.29 | 22.29 | [ | ||||
1.75 eV perovskite | LiF/C60/ALD SnOx/Au/PEDOT:PSS | FA0.6MA0.4Sn0.6Pb0.4I3 | 2.20 | 15.1 | 81.6 | 27.2 | [ | ||||
Cs0.2FA0.8Pb(I0.6Br0.4)3 | C60/ALD SnOx/Au/PEDOT:PSS | Cs0.05FA0.7MA0.25Pb0.5Sn0.5I3 | 2.19 | 15.05 | 83.1 | 27.4 | [ | ||||
FA0.8Cs0.2PbI2.1Br0.9 | LiF/C60/ALD SnO2/Au | FA0.6MA0.3Cs0.1Pb0.5Sn0.5I3 | 1.94 | 12.9 | 85.8 | 21.5 | [ | ||||
CsPbI2.2Br0.8 | MoO3/Au/ZnO | PM6:CH1007 | 2.10 | 13.90 | 76.86 | 22.43 | [ | ||||
FA0.83Cs0.17Pb(I0.5Br0.5)3 | SnO2/ZTO/ITO/PEDOT:PSS | FA0.75Cs0.25Sn0.5Pb0.5I3 | 1.66 | 14.5 | 70 | 16.9 | [ | ||||
MA0.9Cs0.1Pb(I0.6Br0.4)3 | C60/Bis-C60/ITO/PEDOT: PSS | MAPb0.5Sn0.5I3 | 1.98 | 12.7 | 73 | 18.5 | [ | ||||
Wide Eg perovskite | nc-SiOx:H/ITO/PTAA | Silicon | 1.76 | 18.5 | 78.5 | 25.5 | [ | ||||
Cs0.15(FA0.83MA0.17)0.85Pb(I0.8Br0.2)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.80 | 17.8 | 79.4 | 25.4 | [ | ||||
Cs0.1MA0.9Pb(I0.9Br0.1)3 | a-Si:H(n+)/ITO/PTAA | Silicon | 1.82 | 19.2 | 75.3 | 26.2 | [ | ||||
FA0.8Cs0.2 Pb(I0.6Br0.4)3 | C60/ITO NCs/E-NiOx | FA0.8Cs0.2Pb0.5Sn0.5I3 | 1.90 | 15.4 | 80.4 | 23.5 | [ | ||||
Cs0.2FA0.8PbI1.8Br1.2 | C60/ALD SnO2/ITO NCs | FAPb0.5Sn0.5I3 | 2.03 | 16.2 | 80.3 | 26.3 | [ | ||||
Cs0.1(MA0.17FA0.83)0.9Pb (I0.83Br0.17)3 | a-Si:H(n)/ITO/NiOx | Silicon | 1.75 | 15.5 | 73.6 | 20.0 | [ | ||||
Wide Eg perovskite | nc-SiOx(n)/ITO/NiOx/2- PACz | Silicon | 1.79 | 20.11 | 79.95 | 28.84 | [ | ||||
Wide Eg perovskite | a-Si:H(n)/ITO/NiOx | Silicon | 1.82 | 16.31 | 78.32 | 23.31 | [ | ||||
Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 | nc-SiOx:H(n)/ITO | Silicon | 1.90 | 19.54 | 80.90 | 29.83 | [ | ||||
Wide Eg perovskite | a-Si:H(i/n)/ITO/NiO | Silicon | 1.85 | 19.8 | 78.9 | 28.9 | [ | ||||
MAPbI3 | p-aSi/IZO/PCBM | Silicon | 1.69 | 15.8 | 79.9 | 21.4 | [ | ||||
1.79 eV perovskite | C60/BCP/IZO/MoOx | PM6:Y6:PC71BM | 2.06 | 14.83 | 77.2 | 23.6 | [ | ||||
FA0.78Cs0.22Pb(I0.85Br0.15)3 | Passivated ETL/IZO/SAM | Silicon | 1.91 | 19.29 | 78.3 | 28.81 | [ | ||||
Cs0.05MA0.14FA0.81Pb(I0.8Br0.2)3 | N doped nc-Si/IZO/2-PACz | Silicon | 1.85 | 19.7 | 77.9 | 28.4 | [ | ||||
Wide Eg Perovskite | Poly-Si(n+)IZO | TOPCon | 1.80 | 19.4 | 81.64 | 28.49 | [ | ||||
Cs0.4FA0.6PbI1.95Br1.05 | (n+)C60/SnO1.76 | Cs0.05MA0.45FA0.5Pb0.5Sn0.5I3 | 2.03 | 15.2 | 79.7 | 24.6 | [ | ||||
FA0.8Cs0.2Pb(I0.5Br0.5)3 | SiOx/InOx/MoOx | PM6:Y6:PC61BM | 2.15 | 14.0 | 80 | 24.0 | [ | ||||
MAPbI3 | Spiro-OMeTAD/PEDOT: PSS/PEI | MAPbI3 | 1.89 | 6.61 | 56 | 7.0 | [ | ||||
PBSeDTEG8:PC61BM | TiO2/PEDOT:PSS-PH500/ PEDOT:PSS 4083 | MAPbI3 | 1.52 | 10.05 | 67 | 10.23 | [ | ||||
MAPbBr3 | Spiro-OMeTAD/PEDOT: PSS/C60 | MAPbI3 | 1.96 | 6.40 | 41 | 5.1 | [ | ||||
Cs0.4FA0.6PbI2Br | C60/SnO2/Graphene oxide/PEDOT:PSS | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.02 | 15.8 | 79.3 | 25.3 | [ | ||||
Cs0.4FA0.6PbI2.16Br0.84 | C60/SnO2-x/Graphene oxide/SnOCl | Cs0.2FA0.8Pb0.5Sn0.5I3 | 2.05 | 16.2 | 79.3 | 26.3 | [ |
[1] |
SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510.
DOI URL |
[2] |
WANG Y, LIN R, WANG X, et al. Oxidation-resistant all- perovskite tandem solar cells in substrate configuration. Nature Communications, 2023, 14: 1819.
DOI |
[3] |
JAYSANKAR M, RAUL B A L, BASTOS J, et al. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 2018, 4(1): 259.
DOI URL |
[4] |
HU H, MOGHADAMZADEH S, AZMI R, et al. Sn-Pb mixed perovskites with fullerene-derivative interlayers for efficient four-terminal all-perovskite tandem solar cells. Advanced Functional Materials, 2021, 32(12): 2107650.
DOI URL |
[5] |
JAYSANKAR M, QIU W, VAN EERDEN M, et al. Four-terminal perovskite/silicon multijunction solar modules. Advanced Energy Materials, 2017, 7(15): 1602807.
DOI URL |
[6] |
KIM S, TRINH T T, PARK J, et al. Over 30% efficiency bifacial 4-terminal perovskite-heterojunction silicon tandem solar cells with spectral albedo. Scientific Reports, 2021, 11: 15524.
DOI PMID |
[7] |
CUI Y, YAO H, ZHANG J, et al. Single-junction organic photovoltaic cells with approaching 18% efficiency. Advanced Materials, 2020, 32(19): 1908205.
DOI URL |
[8] |
ABDEL-SHAKOUR M, CHOWDHURY T H, MATSUISHI K, et al. High‐efficiency tin halide perovskite solar cells: the chemistry of tin (II) compounds and their interaction with Lewis base additives during perovskite film formation. Solar RRL, 2020, 5(1): 2000606.
DOI URL |
[9] |
LIU H, WANG L, LI R, et al. Modulated crystallization and reduced VOC deficit of mixed lead-tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Letters, 2021, 6(8): 2907.
DOI URL |
[10] |
GUO T, WANG H, HAN W, et al. Designed p-type graphene quantum dots to heal interface charge transfer in Sn-Pb perovskite solar cells. Nano Energy, 2022, 98: 107298.
DOI URL |
[11] |
WERNER J, WENG C H, WALTER A, et al. Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. The Journal of Physical Chemistry Letters, 2016, 7(1): 161.
DOI URL |
[12] |
LANG K, GUO Q, HE Z, et al. High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. The Journal of Physical Chemistry Letters, 2020, 11(22): 9596.
DOI URL |
[13] |
WANG P, LI W, SANDBERG O J, et al. Tuning of the interconnecting layer for monolithic perovskite/organic tandem solar cells with record efficiency exceeding 21. Nano Letters, 2021, 21(18): 7845.
DOI PMID |
[14] |
LIN R, XU J, WEI M, et al. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603(7899): 73.
DOI |
[15] |
WANG C, SHAO W, LIANG J, et al. Suppressing phase segregation in wide bandgap perovskites for monolithic perovskite/organic tandem solar cells with reduced voltage loss. Small, 2022, 18(49): 2204081.
DOI URL |
[16] |
RAJAGOPAL A, YANG Z, JO S B, et al. Highly efficient perovskite-perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Advanced Materials, 2017, 29(34): 1702140.
DOI URL |
[17] | JOŠT M, KÖHNEN E, MORALES-VILCHES A B, et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield. Energy & Environmental Science, 2018, 11(12): 3511. |
[18] |
CHEN C C, BAE S H, CHANG W H, et al. Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2(2): 203.
DOI URL |
[19] |
HAU S K, YIP H L, ZOU J, et al. Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes. Organic Electronics, 2009, 10(7): 1401.
DOI URL |
[20] |
AMERI T, DENNLER G, WALDAUF C, et al. Fabrication, optical modeling, and color characterization of semitransparent bulk- heterojunction organic solar cells in an inverted structure. Advanced Functional Materials, 2010, 20(10): 1592.
DOI URL |
[21] |
CHO C K, HWANG W J, EUN K, et al. Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. Solar Energy Materials and Solar Cells, 2011, 95(12): 3269.
DOI URL |
[22] |
KIM Y, LEE J, KANG H, et al. Controlled electro-spray deposition of highly conductive PEDOT:PSS films. Solar Energy Materials and Solar Cells, 2012, 98: 39.
DOI URL |
[23] |
YU Z, CHEN X, HARVEY S P, et al. Gradient doping in Sn-Pb perovskites by barium ions for efficient single-junction and tandem solar cells. Advanced Materials, 2022, 34(16): 2110351.
DOI URL |
[24] |
YU Z, WANG J, CHEN B, et al. Solution-processed ternary tin (II) alloy as hole-transport layer of Sn-Pb perovskite solar cells for enhanced efficiency and stability. Advanced Materials, 2022, 34(49): 2205769.
DOI URL |
[25] |
ZHAO D, CHEN C, WANG C, et al. Efficient two-terminal all- perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nature Energy, 2018, 3(12): 1093.
DOI |
[26] |
XIAO K, LIN R, HAN Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 2020, 5(11): 870.
DOI |
[27] | CHEN K S, SALINAS J F, YIP H L, et al. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy & Environmental Science, 2012, 5(11): 9551. |
[28] | WANG Z, ZHANG C, CHEN D, et al. ITO-free semitransparent organic solar cells based on silver thin film electrodes. International Journal of Photoenergy, 2014, 2014: 209206. |
[29] |
LI X, MENG H, SHEN F, et al. Semitransparent fullerene-free polymer solar cell with 44% AVT and 7% efficiency based on a new chlorinated small molecule acceptor. Dyes and Pigments, 2019,166: 196.
DOI URL |
[30] |
CHEN X, JIA Z, CHEN Z, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 2020, 4(7): 1594.
DOI URL |
[31] |
GU X, LAI X, ZHANG Y, et al. Organic solar cell with efficiency over 20% and VOC exceeding 2.1 V enabled by tandem with all-inorganic perovskite and thermal annealing-free process. Advanced Science, 2022, 9(28): 2200445.
DOI URL |
[32] |
LIN R, XIAO K, QIN Z, et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nature Energy, 2019, 4(10): 864.
DOI |
[33] |
LI H, WANG Y, GAO H, et al. Revealing the output power potential of bifacial monolithic all-perovskite tandem solar cells. eLight, 2022, 2(1): 21.
DOI |
[34] |
LI L, WANG Y, WANG X, et al. Flexible all-perovskite tandem solar cells approaching 25% efficiency with molecule-bridged hole-selective contact. Nature Energy, 2022, 7(8): 708.
DOI |
[35] |
JIANG Q, TONG J, SCHEIDT R A, et al. Compositional texture engineering for highly stable wide-bandgap perovskite solar cells. Science, 2022, 378(6626): 1295.
DOI PMID |
[36] |
EPERON G E, LEIJTENS T, BUSH K A, et al. Perovskite- perovskite tandem photovoltaics with optimized band gaps. Science, 2016, 354(6314): 861.
DOI URL |
[37] |
GAO H, LU Q, XIAO K, et al. Thermally stable all-perovskite tandem solar cells fully using metal oxide charge transport layers and tunnel junction. Solar RRL, 2021, 5(12): 2100814.
DOI URL |
[38] |
CHEN B, YU Z J, MANZOOR S, et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule, 2020, 4(4): 850.
DOI URL |
[39] |
MAO L, YANG T, ZHANG H, et al. Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Advanced Materials, 2022, 34(40): 2206193.
DOI URL |
[40] |
CHEN W, ZHU Y, XIU J, et al. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7(3): 229.
DOI |
[41] |
DE BASTIANI M, JALMOOD R, LIU J, et al. Monolithic perovskite/silicon tandems with >28% efficiency: role of silicon- surface texture on perovskite properties. Advanced Functional Materials, 2022, 33(4): 2205557.
DOI URL |
[42] |
SVEINBJÖRNSSON K, LI B, MARIOTTI S, et al. Monolithic perovskite/silicon tandem solar cell with 28.7% efficiency using industrial silicon bottom cells. ACS Energy Letters, 2022, 7(8): 2654.
DOI URL |
[43] |
ZHENG J, WEI H, YING Z, et al. Balancing charge‐carrier transport and recombination for perovskite/TOPCon tandem solar cells with double-textured structures. Advanced Energy Materials, 2022, 13(5): 2203006.
DOI URL |
[44] |
YU Z, YANG Z, NI Z, et al. Simplified interconnection structure based on C-60/SnO2-x for all-perovskite tandem solar cells. Nature Energy, 2020, 5(9): 657.
DOI |
[45] |
BRINKMANN K O, BECKER T, ZIMMERMANN F, et al. Perovskite-organic tandem solar cells with indium oxide interconnect. Nature, 2022, 604(7905): 280.
DOI |
[46] |
PO R, CARBONERA C, BERNARDI A, et al. Polymer- and carbon-based electrodes for polymer solar cells: toward low-cost, continuous fabrication over large area. Solar Energy Materials and Solar Cells, 2012, 100: 97.
DOI URL |
[47] |
JIANG F, LIU T, LUO B, et al. A two-terminal perovskite/perovskite tandem solar cell. Journal of Materials Chemistry A, 2016, 4(4): 1208.
DOI URL |
[48] |
SHENG R, HÖRANTNER M T, WANG Z, et al. Monolithic wide band gap perovskite/perovskite tandem solar cells with organic recombination layers. The Journal of Physical Chemistry C, 2017, 121(49): 27256.
DOI URL |
[49] |
WU X, LIU Y, QI F, et al. Improved stability and efficiency of perovskite/organic tandem solar cells with an all-inorganic perovskite layer. Journal of Materials Chemistry A, 2021, 9(35): 19778.
DOI URL |
[50] |
QIN S, LU C, JIA Z, et al. Constructing monolithic perovskite/ organic tandem solar cell with efficiency of 22.0% via reduced open-circuit voltage loss and broadened absorption spectra. Advanced Materials, 2022, 34(11): 2108829.
DOI URL |
[51] |
DING Y, GUO Q, GENG Y, et al. A low-cost hole transport layer enables CsPbI2Br single-junction and tandem perovskite solar cells with record efficiencies of 17.8% and 21.4%. Nano Today, 2022, 46: 101586.
DOI URL |
[52] |
XIE Y M, YAO Q, ZENG Z, et al. Homogeneous grain boundary passivation in wide-bandgap perovskite films enables fabrication of monolithic perovskite/organic tandem solar cells with over 21% efficiency. Advanced Functional Materials, 2022, 32(19): 2112126.
DOI URL |
[53] |
DATTA K, WANG J, ZHANG D, et al. Monolithic all-perovskite tandem solar cells with minimized optical and energetic losses. Advanced Materials, 2022, 34(11): 2110053.
DOI URL |
[54] |
XIE Y M, NIU T, YAO Q, et al. Understanding the role of interconnecting layer on determining monolithic perovskite/ organic tandem device carrier recombination properties. Journal of Energy Chemistry, 2022, 71: 12.
DOI URL |
[55] |
TONG J, JIANG Q, FERGUSON A J, et al. Carrier control in Sn-Pb perovskites via 2D cation engineering for all-perovskite tandem solar cells with improved efficiency and stability. Nature Energy, 2022, 7(7): 642.
DOI |
[56] |
CHEN H, MAXWELL A, LI C, et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature, 2023, 613(7945): 676.
DOI |
[57] |
MAHMUD M A, ZHENG J, TANG S, et al. Water-free, conductive hole transport layer for reproducible perovskite-perovskite tandems with record fill factor. ACS Energy Letters, 2022, 8(1): 21.
DOI URL |
[58] | YAO Q, XIE Y M, ZHOU Y, et al. Dual sub-cells modification enables high‐efficiency n-i-p type monolithic perovskite/ organic tandem solar cells. Advanced Functional Materials, 2023, 33(8): 202212599. |
[59] |
CHEN B, YU Z, LIU K, et al. Grain engineering for perovskite/ silicon monolithic tandem solar cells with efficiency of 25.4%. Joule, 2019, 3(1): 177.
DOI URL |
[60] |
WU P, WEN J, WANG Y, et al. Efficient and thermally stable all-perovskite tandem solar cells using all-FA narrow-bandgap perovskite and metal-oxide-based tunnel junction. Advanced Energy Materials, 2022, 12(48): 2202948.
DOI URL |
[61] |
ROGER J, SCHORN L K, HEYDARIAN M, et al. Laminated monolithic perovskite/silicon tandem photovoltaics. Advanced Energy Materials, 2022, 12(27): 2200961.
DOI URL |
[62] |
YU B, TANG F, YANG Y, et al. Impermeable atomic layer deposition for sputtering buffer layer in efficient semi-transparent and tandem solar cells via activating unreactive substrate. Advanced Materials, 2023, 35(5): 2202447.
DOI URL |
[63] |
TOCKHORN P, SUTTER J, CRUZ A, et al. Nano-optical designs for high-efficiency monolithic perovskite-silicon tandem solar cells. Nature Nanotechnology, 2022, 17(11): 1214.
DOI |
[64] |
LUO X, LUO H, LI H, et al. Efficient perovskite/silicon tandem solar cells on industrially compatible textured silicon. Advanced Materials, 2023, 35(9): 2207883.
DOI URL |
[1] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[2] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[3] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[4] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[5] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[6] | WANG Weiming, WANG Weide, SU Yi, MA Qingsong, YAO Dongxu, ZENG Yuping. Research Progress of High Thermal Conductivity Silicon Nitride Ceramics Prepared by Non-oxide Sintering Additives [J]. Journal of Inorganic Materials, 2024, 39(6): 634-646. |
[7] | CAI Feiyan, NI Dewei, DONG Shaoming. Research Progress of High-entropy Carbide Ultra-high Temperature Ceramics [J]. Journal of Inorganic Materials, 2024, 39(6): 591-608. |
[8] | WU Xiaochen, ZHENG Ruixiao, LI Lu, MA Haolin, ZHAO Peihang, MA Chaoli. Research Progress on In-situ Monitoring of Damage Behavior of SiCf/SiC Ceramic Matrix Composites at High Temperature Environments [J]. Journal of Inorganic Materials, 2024, 39(6): 609-622. |
[9] | ZHAO Rida, TANG Sufang. Research Progress of Ceramic Matrix Composites Prepared by Improved Reactive Melt Infiltration through Ceramization of Porous Carbon Matrix [J]. Journal of Inorganic Materials, 2024, 39(6): 623-633. |
[10] | FANG Guangwu, XIE Haoyuan, ZHANG Huajun, GAO Xiguang, SONG Yingdong. Progress of Damage Coupling Mechanism and Integrated Design Method for CMC-EBC [J]. Journal of Inorganic Materials, 2024, 39(6): 647-661. |
[11] | ZHANG Xinghong, WANG Yiming, CHENG Yuan, DONG Shun, HU Ping. Research Progress on Ultra-high Temperature Ceramic Composites [J]. Journal of Inorganic Materials, 2024, 39(6): 571-590. |
[12] | ZHANG Hui, XU Zhipeng, ZHU Congtan, GUO Xueyi, YANG Ying. Progress on Large-area Organic-inorganic Hybrid Perovskite Films and Its Photovoltaic Application [J]. Journal of Inorganic Materials, 2024, 39(5): 457-466. |
[13] | LI Zongxiao, HU Lingxiang, WANG Jingrui, ZHUGE Fei. Oxide Neuron Devices and Their Applications in Artificial Neural Networks [J]. Journal of Inorganic Materials, 2024, 39(4): 345-358. |
[14] | BAO Ke, LI Xijun. Chemical Vapor Deposition of Vanadium Dioxide for Thermochromic Smart Window Applications [J]. Journal of Inorganic Materials, 2024, 39(3): 233-258. |
[15] | HU Mengfei, HUANG Liping, LI He, ZHANG Guojun, WU Houzheng. Research Progress on Hard Carbon Anode for Li/Na-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(1): 32-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||