Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (9): 1044-1054.DOI: 10.15541/jim20230049
Special Issue: 【能源环境】钙钛矿(202506); 【能源环境】太阳能电池(202506)
• REVIEW • Previous Articles Next Articles
ZHANG Lun(), LYU Mei, ZHU Jun(
)
Received:
2023-01-31
Revised:
2023-04-28
Published:
2023-09-20
Online:
2023-06-02
Contact:
ZHU Jun, professor. E-mail: jzhu@hfut.edu.cnAbout author:
ZHANG Lun (1992-), male, PhD candidate. E-mail: zhanglunme@163.com
Supported by:
CLC Number:
ZHANG Lun, LYU Mei, ZHU Jun. Research Progress of Cs2AgBiBr6 Perovskite Solar Cell[J]. Journal of Inorganic Materials, 2023, 38(9): 1044-1054.
Fig. 3 Fabrication processes of Cs2AgBiBr6 films (a) Solution processing method[19]; (b) Anti-solvent assisted film forming method[8]; (c) Vapor deposition processing method[35]; (d) Vacuum-assisted film forming method[37]; (e) Spray-coating method[38]
Fig. 4 SEM images of Cs2AgBiBr6 films deposited using (a) DMSO and (b) DMSO+DMF as precursor solvents[34] and prepared by (c) vapor deposition and (d) solution processing[36]
Fig. 5 Ion doped Cs2AgBiBr6 perovskite solar cells (a) SEM images of Cs2AgBiBr6, Cs1.99Li0.01AgBiBr6(Cs), Cs1.99Na0.01AgBiBr6(Cs-Li), Cs1.99K0.01AgBiBr6(Cs-Na), and Cs1.99Rb0.01AgBiBr6(Cs-K) films; (b) J-V curves of Cs2AgBiBr6 perovskite solar cells (w/o: Cs2AgBiBr6, w Li+: Cs1.99Li0.01AgBiBr6, w Na+: Cs1.99Na0.01AgBiBr6, w K+: Cs1.99K0.01AgBiBr6, w Rb+: Cs1.99Rb0.01AgBiBr6)[54]; (c) Band structure diagram for Cs2AgBiBr6[57]; (d) Tauc plots of Cs2AgSbxBi1-xBr6 (x=0, 0.25, 0.50, 0.75) films[58]; (e) Crystal structure diagram of Cs2AgBiBr6-2xSx; (f) UV-Vis absorption spectra with inset showing corresponding Tauc plots (right) of Cs2AgBiBr6-2xSx film[60]. Colorful figures are available on website
Fig. 6 Additive engineering optimization of Cs2AgBiBr6 films (a) Schematic illustration of MABr additive assisted Cs2AgBiBr6 crystallization process; (b) SEM images of Cs2AgBiBr6 films prepared (left) without and (right) with MABr[66]; (c) Schematic diagram of the mechanism of additive GuaSCN in the formation process of Cs2AgBiBr6 film; (d) SEM images of Cs2AgBiBr6 films prepared (left) without and (right) with GuaSCN [67]; (e) Schematic illustration of BMPyr+-Br- interaction between ionic liquid BMPyrCl and Cs2AgBiBr6 perovskite; (f) SEM images of Cs2AgBiBr6 films prepared (left) without and (right) with BMPyrCl[70]. Colorful figures are available on website
Fig. 7 Schematic diagrams of the interface energy level alignments in Cs2AgBiBr6 solar cells (a) Cu2O[71] and (b) HTL-1, HTL-2 or HTL-3[72] as hole transport layers; (c) C60/TiO2 as electron transport layers[73]
Fig. 8 Schematic diagrams of interface defect passivation in Cs2AgBiBr6 solar cells (a) PMMA[74], (b) Y-6[75] and (c) N719[76] passivating Cs2AgBiBr6/HTL interfaces; (d) MXene passivating Cs2AgBiBr6/ETL interface[77]. Colorful figures are available on website
[1] |
KOMIJA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131(17): 6050.
DOI PMID |
[2] | NREL. Best research-cell efficiency chart. [2023-04-05]. https://www.nrel.gov/pv/cell-efficiency.html. |
[3] |
ZHAO J, WEI L, JIA C, et al. Metallic tin substitution of organic lead perovskite films for efficient solar cells. Journal of Materials Chemistry A, 2018, 6(41): 20224.
DOI URL |
[4] |
LIU D, YIN Y X, LIU F J, et al. Thickness-dependent highly sensitive photodetection behavior of lead-free all-inorganic CsSnBr3 nanoplates. Rare Metals, 2022, 41(5): 1753.
DOI |
[5] |
HU W, HE X, FANG Z, et al. Bulk heterojunction gifts bismuth- based lead-free perovskite solar cells with record efficiency. Nano Energy, 2020, 68: 104362.
DOI URL |
[6] | JIA Q, LI C, TIAN W, et al. Large-grained all-inorganic bismuth- based perovskites with narrow band gap via Lewis acid-base adduct approach. ACS Applied Materials & Interfaces, 2020, 12(39): 43876. |
[7] |
MA Z, SHI Z, YANG D, et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Letters, 2020, 5(2): 385.
DOI URL |
[8] |
GAO W, RAN W, XI J, et al. High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem, 2018, 19(14): 1696.
DOI URL |
[9] | 顾津宇, 齐朋伟, 彭扬, 等. 无机非铅钙钛矿太阳能电池研究进展. 物理化学学报, 2017, 33(7): 1379. |
[10] |
JIANG X, LI H, ZHOU Q, et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. Journal of the American Chemical Society, 2021, 143(29): 10970.
DOI URL |
[11] |
ZHOU J, HAO M, ZHANG Y, et al. Chemo-thermal surface dedoping for high-performance tin perovskite solar cells. Matter, 2022, 5(2): 683.
DOI URL |
[12] |
YU B B, CHEN Z, ZHU Y, et al. Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Advanced Materials, 2021, 33(36): 2102055.
DOI URL |
[13] |
SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth- halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of the American Chemical Society, 2016, 138(7): 2138.
DOI URL |
[14] |
PAN W, WU H, LUO J, et al. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726.
DOI URL |
[15] |
FENG H J, DENG W, YANG K, et al. Double perovskite Cs2BBiX6 (B=Ag, Cu; X=Br, Cl)/TiO2 heterojunction: an efficient Pb-free perovskite interface for charge extraction. The Journal of Physical Chemistry C, 2017, 121(8): 4471.
DOI URL |
[16] |
LI Y J, WU T, SUN L, et al. Lead-free and stable antimony- silver-halide double perovskite (CH3NH3)2AgSbI6. RSC Advances, 2017, 7(56): 35175.
DOI URL |
[17] |
IGBARI F, WANG Z K, LIAO L S. Progress of lead-free halide double perovskites. Advanced Energy Materials, 2019, 9(12): 1803150.
DOI URL |
[18] |
BARTEL C J, CLARY J M, SUTTON C, et al. Inorganic halide double perovskites with optoelectronic properties modulated by sublattice mixing. Journal of the American Chemical Society, 2020, 142(11): 5135.
DOI PMID |
[19] |
NING W, GAO F. Structural and functional diversity in lead-free halide perovskite materials. Advanced Materials, 2019, 31(22): 1900326.
DOI URL |
[20] |
PECUNIA V, OCCHIPINTI L G, Chakraborty A, et al. Lead-free halide perovskite photovoltaics: challenges, open questions, and opportunities. APL Materials, 2020, 8(10): 100901.
DOI URL |
[21] |
GREUL E, PETRUS M L, BINEK A, et al. Highly stable, phase pure Cs2ABiBr6 double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 2017, 5(37): 19972.
DOI URL |
[22] |
ZHANG Z, SUN Q, LU Y, et al. Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nature Communications, 2022, 13: 3397.
DOI |
[23] |
ZHAO Y, MA F, QU Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377(6605): 531.
DOI URL |
[24] |
JEONG S, SEO S, YANG H, et al. Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Advanced Energy Materials, 2021, 11(42): 2102236.
DOI URL |
[25] |
MIN H, KIM M, LEE S, et al. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 366(6466): 749.
DOI URL |
[26] |
XIAO K, LIN R, HAN Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface- anchoring zwitterionic antioxidant. Nature Energy, 2020, 5(1): 870.
DOI |
[27] |
TRESS W, SIRTL M T. Cs2AgBiBr6 double perovskites as lead-free alternatives for perovskite solar cells. Solar RRL, 2022, 6(2): 2100770.
DOI URL |
[28] |
SAVORY C N, WALSH A, SCANLON D O, et al. Can Pb-free halide double perovskites support high-efficiency solar cells. ACS Energy Letters, 2016, 1(5): 949.
DOI URL |
[29] |
YADAV S C, SRIVASTAVA A, MANJUNATH V, et al. Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Materials Today Physics, 2022, 26: 100731.
DOI URL |
[30] |
KUNG P K, LI M H, LIN P Y, et al. Lead-free double perovskites for perovskite solar cells. Solar RRL, 2020, 4(2): 1900306.
DOI URL |
[31] |
LI C, LU X, DING W, et al. Formability of ABX3 (X=F, Cl, Br, I) halide perovskites. Acta Crystallographica Section B: Structural Science, 2008, 64(6): 702.
DOI URL |
[32] |
BARTEL C J, SUTTON C, GOLDSMITH B P, et al. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 2019, 5(2): eaav0693.
DOI URL |
[33] |
SU J, MOU T, WEN J, et al. First-principles study on the structure, electronic, and optical properties of Cs2AgBiBr6-xClx mixed-halide double perovskites. The Journal of Physical Chemistry C, 2020, 124(9): 5371.
DOI URL |
[34] |
ZHAO D, WANG B, LIANG C, et al. Facile deposition of high-quality Cs2AgBiBr6 films for efficient double perovskite solar cells. Science China Materials, 2020, 63(8): 1518.
DOI |
[35] |
WANG M, ZENG P, BAI S, et al. High-quality sequential- vapor-deposited Cs2AgBiBr6 thin films for lead-free perovskite solar cells. Solar RRL, 2018, 2(12): 1800217.
DOI URL |
[36] |
IGBARI F, WANG R, WANG Z K, et al. Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Letters, 2019, 19(3): 2066.
DOI URL |
[37] |
WU C, ZHANG Q, LIU Y, et al. The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Advanced Science, 2018, 5(3): 1700759.
DOI URL |
[38] |
DAEM N, DEWALQUE J, LANG F, et al. Spray-coated lead-free Cs2AgBiBr6 double perovskite solar cells with high open-circuit voltage. Solar RRL, 2021, 5(9): 2100422.
DOI URL |
[39] |
REN Y, DUAN B, XU Y, et al. New insight into solvent engineering technology from evolution of intermediates via one-step spin-coating approach. Science China Materials, 2017, 60(17): 392.
DOI URL |
[40] |
TODOROV T, MITZI D B. Direct liquid coating of chalcopyrite light-asorbing layers for photovoltaic devices. European Journal of Inorganic Chemistry, 2010, 2010(1): 17.
DOI URL |
[41] | YANG J, BAO C, NING W, et al. Stable, high-sensitivity and fast-response photodetectors based on lead-free Cs2AgBiBr6 double perovskite films. Advanced Optical Materials, 2019, 7(13): 1801732. |
[42] |
DUAN J, YANG Y, TANG J, et al. MACl enhanced electron extraction in all-inorganic Cs2AgBiBr6perovskite photovoltaics. Chemical Communications, 2023, 59(9): 1173.
DOI URL |
[43] |
PANTALER M, CHO K T, QUELOZ V I E, et al. Hysteresis-free lead-free double-perovskite solar cells by interface engineering. ACS Energy Letters, 2018, 3(8): 1781.
DOI URL |
[44] |
NING W, WANG F, WU B, et al. Long electron-hole diffusion length in high-quality lead-free double perovskite films. Advanced Materials, 2018, 30(20): 1706246.
DOI URL |
[45] |
THANH N T K, MACLEAN N, MAHIDDINE S. Mechanisms of nucleation and growth of nanoparticles in solution. Chemical Reviews, 2014, 114(15): 7610.
DOI PMID |
[46] |
DUNLAP-SHOHL W A, ZHOU Y, PADTURE N P, et al. Synthetic approaches for halide perovskite thin films. Chemical Reviews, 2018, 119(5): 3193.
DOI URL |
[47] |
JUNG M, JI S G, KIM G, et al. Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Society Reviews, 2019, 48(7): 2011.
DOI PMID |
[48] | DING B, GAO L, LIANG L, et al. Facile and scalable fabrication of highly efficient lead iodide perovskite thin-film solar cells in air using gas pump method. ACS Applied Materials & Interfaces, 2016, 8(31): 20067. |
[49] |
BISHOP J E, READ C D, SMITH J A, et al. Fully spray-coated triple-cation perovskite solar cells. Scientific Reports, 2020, 10(1): 6610.
DOI PMID |
[50] |
TURREN-CRUZ S H, HAGFELDT A, SALIBA M. Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 2018, 362(6413): 449.
DOI URL |
[51] |
UCHIDA R, BINET S, ARORA N, et al. Insights about the absence of Rb cation from the 3D perovskite lattice: effect on the structural, morphological, and photophysical properties and photovoltaic performance. Small, 2018, 14(36): 1802033.
DOI URL |
[52] | YI C, LUO J, MELONI S, et al. Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science, 2016, 9(2): 656. |
[53] |
ZHANG Z, WU C, WANG D, et al. Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Organic Electronics, 2019, 74: 204.
DOI URL |
[54] | LI J, DUAN J, DU J, et al. Alkali metal ion-regulated lead-free, all-inorganic double perovskites for HTM-free, carbon-based solar cells. ACS Applied Materials & Interfaces, 2020, 12(42): 47408. |
[55] |
MCCLURE E T, BALL M R, WINDL W, et al. Cs2AgBiX6 (X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors. Chemistry of Materials, 2016, 28(5): 1348.
DOI URL |
[56] |
FILIP M R, HILLMAN S, HAGHIGHIRAD A A, et al. Band gaps of the lead-free halide double perovskites Cs2BiAgCl6and Cs2BiAgBr6 from theory and experiment. The Journal of Physical Chemistry Letters, 2016, 7(13): 2579.
DOI URL |
[57] |
SEBASTIÁ-LUNA P, CALBO J, ALBIACH-SEBASTIÁN N, et al. Tuning the optical absorption of Sn-, Ge-, and Zn-substituted Cs2AgBiBr6 double perovskites: structural and electronic effects. Chemistry of Materials, 2021, 33(20): 8028.
DOI URL |
[58] |
LIU Y, ZHANG L, WANG M, et al. Bandgap-tunable double-perovskite thin films by solution processing. Materials Today, 2019, 28: 25.
DOI |
[59] |
PANTALER M, OLTHOF S, MEERHOLZ K, et al. Bismuth-antimony mixed double perovskites Cs2AgBi1-xSbxBr6 in solar cells. MRS Advances, 2019, 4(64): 3545.
DOI URL |
[60] |
PAI N, LU J, WANG M, et al. Enhancement of the intrinsic light harvesting capacity of Cs2AgBiBr6 double perovskite via modification with sulphide. Journal of Materials Chemistry A, 2020, 8(4): 2008.
DOI URL |
[61] |
LYU M, LEEA D K, PARK N G. Effect of alkaline earth metal chloride additives BCl2 (B = Mg, Ca, Sr and Ba) on photovoltaic performance of FAPbI3 based perovskite solar cells. Nanoscale Horiz, 2020, 5(9): 1332.
DOI URL |
[62] |
LYU M, PARK N G. Effect of additives AX (A=FA, MA, Cs, Rb, NH4, X=Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells. Solar RRL, 2020, 4(10): 2000331.
DOI URL |
[63] |
FENG J, ZHU X, YANG Z, et al. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Advanced Materials, 2018, 30(35): 1801418.
DOI URL |
[64] |
LI T, PAN Y, WANG Z, et al. Additive engineering for highly efficient organic-inorganic halide perovskite solar cells: recent advances and perspectives. Journal of Materials Chemistry A, 2017, 5(25): 12602.
DOI URL |
[65] |
MOORE D T, SAI H, TAN K W, et al. Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. Journal of the American Chemical Society, 2015, 137(6): 2350.
DOI PMID |
[66] |
WU H, WANG Y, LIU A, et al. Methylammonium bromide assisted crystallization for enhanced lead-free double perovskite photovoltaic performance. Advanced Functional Materials, 2022, 32(14): 2109402.
DOI URL |
[67] |
YANG X, XIE A, XIANG H, et al. First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Applied Physics Reviews, 2021, 8: 041402.
DOI URL |
[68] |
YANG A, ZHANG L, XU Y, et al. VOC over 1.2 V for Cs2AgBiBr6 solar cells based on formamidinium acetate additive. Journal of Materials Science: Materials in Electronics, 2022, 33: 18758.
DOI |
[69] |
ZHANG L, XU Y, NIU P J, et al. Regulating the film crystallization kinetics with thiourea additive in Cs2AgBiBr6 solar cells. Journal of Physics D: Applied Physics, 2023, 56(7): 075501.
DOI |
[70] |
LI J, MENG X, WU Z, et al. Pinning bromide ion with ionic liquid in lead-free Cs2AgBiBr6 double perovskite solar cells. Advanced Functional Materials, 2022, 32(25): 2112991.
DOI URL |
[71] | XIAO B, TAN Y, YI Z, et al. Band matching strategy for all-inorganic Cs2AgBiBr6 double perovskite solar cells with high photovoltage. ACS Applied Materials & Interfaces, 2021, 13(31): 37027. |
[72] |
ZHANG Z, WU C, WANG D, et al. Efficient nonlead double perovskite solar cell with multiple hole transport layers. ACS Applied Energy Materials, 2020, 3(10): 9594.
DOI URL |
[73] | LUO T, ZHANG Y, CHANG X, et al. Dual interfacial engineering for efficient Cs2AgBiBr6 based solar cells. Journal of Energy Chemistry, 2021, 53: 373. |
[74] |
LI J, YAN F, YANG P, et al. Suppressing interfacial shunt loss via functional polymer for performance improvement of lead-free Cs2AgBiBr6 double perovskite solar cells. Solar RRL, 2021, 6(4): 2100791.
DOI URL |
[75] |
LI B, WU X, ZHANG S, et al. Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation. Chemical Engineering Journal, 2022, 446: 137144.
DOI URL |
[76] |
YANG X, CHEN Y, LIU P, et al. Simultaneous power conversion efficiency and stability enhancement of Cs2AgBiBr6 lead-free inorganic perovskite solar cell through adopting a multifunctional dye interlayer. Advanced Functional Materials, 2020, 30(23): 2001557.
DOI URL |
[77] |
LI Z, WANG P, MA C, et al. Single-layered MXene nanosheets doping TiO2 for efficient and stable double perovskite solar cells. Journal of the American Chemical Society, 2021, 143(6): 2593.
DOI URL |
[78] |
WANG B, LI N, YANG L, et al. Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr6 double perovskite solar cells. Journal of the American Chemical Society, 2021, 143(5): 2207.
DOI URL |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | NI Xiaomeng, XU Fangxian, LIU Jingjing, ZHANG Shuai, GUO Huafei, YUAN Ningyi. Photovoltaic Performance of Sb2(S,Se)3 Film Enhanced by Addition of Formamidinesulfinic Acid [J]. Journal of Inorganic Materials, 2025, 40(4): 372-378. |
[8] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[9] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[10] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[11] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[12] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[13] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[14] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[15] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||