Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (5): 569-576.DOI: 10.15541/jim20220548
• RESEARCH ARTICLE • Previous Articles Next Articles
WU Shuang(), GOU Yanzi(
), WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde(
)
Received:
2022-09-19
Revised:
2022-11-10
Published:
2022-11-16
Online:
2022-11-16
Contact:
GOU Yanzi, associate professor. E-mail: y.gou2012@hotmail.com;About author:
WU Shuang(1996-), female, PhD candidate. E-mail: alanwu37@163.com
Supported by:
CLC Number:
WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers[J]. Journal of Inorganic Materials, 2023, 38(5): 569-576.
Parameter | F-II | F-II-1800 ℃ | F-III | F-III-1800 ℃ |
---|---|---|---|---|
C/Si | 1.34 | 1.42 | 1.08 | 1.08 |
Al content/ (%, in mass) | / | / | <1.00 | <1.00 |
O content/ (%, in mass) | 0.98 | 0.53 | 0.07 | 0.05 |
Diameter/μm | 12.0 | 11.9 | 9.9 | 9.9 |
Density/ (g·cm-3) | 2.72 | 2.66 | 3.08 | 3.09 |
Tensile strength/ GPa | 2.7 | 0.9 | 1.8 | 1.8 |
Elastic modulus/GPa | 260 | 207 | 372 | 366 |
Table 1 Composition and general properties of SiC fibers before and after heat treatment
Parameter | F-II | F-II-1800 ℃ | F-III | F-III-1800 ℃ |
---|---|---|---|---|
C/Si | 1.34 | 1.42 | 1.08 | 1.08 |
Al content/ (%, in mass) | / | / | <1.00 | <1.00 |
O content/ (%, in mass) | 0.98 | 0.53 | 0.07 | 0.05 |
Diameter/μm | 12.0 | 11.9 | 9.9 | 9.9 |
Density/ (g·cm-3) | 2.72 | 2.66 | 3.08 | 3.09 |
Tensile strength/ GPa | 2.7 | 0.9 | 1.8 | 1.8 |
Elastic modulus/GPa | 260 | 207 | 372 | 366 |
Sample | D Band | G Band | ID/IG | La/nm | ||
---|---|---|---|---|---|---|
Position/cm-1 | FWHM | Position/cm-1 | FWHM | |||
F-II | 1356.3 | 112.5 | 1599.8 | 122.7 | 1.39 | 13.8 |
F-II-1800 ℃ | 1351.3 | 59.9 | 1586.8 | 63.2 | 1.09 | 17.6 |
F-III | 1352.9 | 79.9 | 1590.1 | 89.0 | 1.12 | 17.2 |
F-III-1800 ℃ | 1354.3 | 64.9 | 1593.0 | 72.8 | 1.18 | 16.3 |
Table 2 Raman characteristics of free carbon phase of the fibers
Sample | D Band | G Band | ID/IG | La/nm | ||
---|---|---|---|---|---|---|
Position/cm-1 | FWHM | Position/cm-1 | FWHM | |||
F-II | 1356.3 | 112.5 | 1599.8 | 122.7 | 1.39 | 13.8 |
F-II-1800 ℃ | 1351.3 | 59.9 | 1586.8 | 63.2 | 1.09 | 17.6 |
F-III | 1352.9 | 79.9 | 1590.1 | 89.0 | 1.12 | 17.2 |
F-III-1800 ℃ | 1354.3 | 64.9 | 1593.0 | 72.8 | 1.18 | 16.3 |
[1] |
AN Q L, CHEN J, MING W W, et al. Machining of SiC ceramic matrix composites: a review. Chinese Journal of Aeronautic, 2021, 34(4): 540.
DOI URL |
[2] |
YUAN Q, SONG Y C. Research and development of continuous SiC fibers and SiCf/SiC composities. Journal of Inorganic Materials, 2016, 31(11): 1157.
DOI |
[3] |
WANG P, WANG Q L, ZHANG X Y, et al. Oxidation behavior of SiCf/SiC composites modified by layered-Y2Si2O7 in wet oxygen environment. Journal of Inorganic Materials, 2019, 34(8): 904.
DOI URL |
[4] |
LÜ X X, JIANG Z Y, ZHOU Y R, et al. Effect of BN/SiC multilayered interphases on mechanical properties of SiC Fibers and minicomposites by PIP. Journal of Inorganic Materials, 2020, 35(10): 1099.
DOI |
[5] | 刘虎, 杨金华, 焦健. 航空发动机用连续SiCf/SiC复合材料制备工艺及应用前景. 航空制造技术, 2017, (16): 90. |
[6] |
WANG P, LIU F Q, WANG H, et al. A review of third generation SiC fibers and SiCf/SiC composites. Journal of Materials Science and Technology, 2019, 35(12): 2743.
DOI URL |
[7] |
BUNSELL A R, PIANT A. A review of the development of three generations of small diameter silicon carbide fibres. Journal of Materials Science, 2006, 41(3): 823.
DOI URL |
[8] |
INCHIKAWA H. Polymer-derived ceramic fibers. Annual Review of Materials Research, 2016, 46(1): 335.
DOI URL |
[9] |
SHA J J, HINOKI T, KOHYAMA A. Microstructural characterization and fracture properties of SiC-based fibers annealed at elevated temperatures. Journal of Materials Science, 2007, 42(13): 5046.
DOI URL |
[10] | SHA J J, NOZAWA T, PARK J S, et al. Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers. Journal of Nuclear Materials, 2004, 329-333: 592. |
[11] |
ISHIKAWA T, KOHTOKU Y, KUMAGAWA K, et al. High-strength alkali-resistant sintered SiC fibre stable to 2200 ℃. Nature, 1998, 391(6669): 773.
DOI |
[12] |
HUGUST-GARCIA J, JANKOWIAK A, MIRO S, et al. Ion irradiation effects on third generation SiC fibers in elastic and inelastic energy loss regimes. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 327: 93.
DOI URL |
[13] |
GOU Y Z, JIAN K, WANG H, et al. Fabrication of nearly stoichiometric polycrystalline SiC fibers with excellent high- temperature stability up to 1900 ℃. Journal of the American Ceramic Society, 2018, 101(5): 2050.
DOI URL |
[14] | 王军, 宋永才, 王浩, 等. 先驱体转化法制备碳化硅纤维. 北京: 科学出版社, 2018: 199-250. |
[15] |
CAO S Y, WANG J, WANG H. Effect of heat treatment on the microstructure and tensile strength of KD-II SiC fibers. Materials Science and Engineering A, 2016, 673: 55.
DOI URL |
[16] |
WANG P R, GOU Y Z, WANG H, et al. Revealing the formation mechanism of the skin-core structure in nearly stoichiometric polycrystalline SiC fibers. Journal of the European Ceramic Society, 2020, 40(6): 2295.
DOI URL |
[17] |
ZHANG Y, WU C L, WANG Y D, et al. A detailed study of the microstructure and thermal stability of typical SiC fibers. Materials Characterization, 2018, 146: 91.
DOI URL |
[18] |
USUKAWA R, ISHIKAWA T. Effect of Al contained in polymer- derived SiC crystals on creating stable crystal grain boundaries. International Journal of Applied Ceramic Technology, 2021, 18(1): 6.
DOI URL |
[19] |
WEIBULL W, STOCKHOLM, SWEDEN. A statistical distribution function of wide applicability. Journal of Applied Mechanics: Transactions of the ASME, 1951, 18(3): 293.
DOI URL |
[20] | 姚荣迁, 唐学原, 王艳艳, 等. Hi-Nicalon SiC纤维高温热处理后的断裂机理研究. 金属热处理, 2007(8): 55. |
[21] |
ISHIKAWA T, ODA H. Defect control of SiC polycrystalline fiber synthesized from poly-aluminocarbosilane. Journal of the European Ceramic Society, 2016, 36(15): 3657.
DOI URL |
[22] |
CAO S Y, WANG J, WANG H. Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment. CrystEngComm, 2016, 18(20): 3674.
DOI URL |
[1] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[2] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[3] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[4] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[5] | LI Guangyu, YUE Yifan, WANG Bo, ZHANG Chengyu, SUO Tao, LI Yulong. Damage of 2D-SiC/SiC Composites under Projectile Impact and Tensile Properties after Impact [J]. Journal of Inorganic Materials, 2024, 39(5): 494-500. |
[6] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[7] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[8] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[9] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[10] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[11] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[12] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[13] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[14] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
[15] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||