Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (4): 347-354.DOI: 10.15541/jim20200417
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】热电材料(2020~2021)
Previous Articles Next Articles
YANG Qingyu1,2(), QIU Pengfei1,2, SHI Xun1,2(
), CHEN Lidong1,2
Received:
2020-07-27
Revised:
2020-09-14
Published:
2021-04-20
Online:
2020-09-20
Contact:
SHI Xun, professor. E-mail: xshi@mail.sic.ac.cn
About author:
YANG Qingyu(1995-), male, PhD candidate. E-mail: yangqingyu@student.sic.ac.cn
Supported by:
CLC Number:
YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics[J]. Journal of Inorganic Materials, 2021, 36(4): 347-354.
Fig. 3 Lattice thermal conductivity as a function of configurational entropy for typical TE materials[10,39-40] The red zone presents the minimum lattice thermal conductivity
Fig. 5 Carrier concentration dependence of room-temperature Seebeck coefficient in Cu2(S/Se/Te)-based TE materials with different crystal symmetry[10]
Fig. 6 (a) Seebeck coefficient and (b) lattice thermal conductivity as a function of configurational entropy in (Sn, Ge, Pb, Mn)Te-based materials[39]
Fig. 7 Gibbs free energy as a function of the average solubility parameter$(\bar{\delta })$for given multicomponent TE materials with different number of components[10] (1 ? = 0.1 nm)
[1] | 陈立东, 刘睿恒, 史迅. 热电材料与器件, 北京: 科学出版社. 2018: 1-6. |
[2] | ZHU T J, LIU Y T, FU C G, et al. Compromise and synergy in high-efficiency thermoelectric materials. Advanced Materials, 2017,29(14):26. |
[3] | SLACK G A, ROWE D. CRC Handbook of Thermoelectrics. Boca Raton, FL: CRC press, 1995: 407-440. |
[4] | HICKS L, DRESSELHAUS. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B, 1993,47(24):16631. |
[5] |
SHI X, ZHANG W, CHEN L D, et al. Filling fraction limit for intrinsic voids in crystals: doping in skutterudites. Physical Review Letters, 2005,95(18):185503.
URL PMID |
[6] | SHI X, KONG H, LI C P, et al. Low thermal conductivity and high thermoelectric figure of merit in n-type BaxYbyCo4Sb12 double-filled skutterudites. Applied Physics Letters, 2008,92(18):182101. |
[7] |
SHI X, YANG J, SALVADOR J R, et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 2011,133(20):7837-7846.
URL PMID |
[8] |
PEI Y, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011,473(7345):66-69.
DOI URL PMID |
[9] |
LIU H, SHI X, XU F, et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012,11(5):422-425.
DOI URL PMID |
[10] | LIU R, CHEN H, ZHAO K, et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 2017,29(38):1702712. |
[11] | YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004,6(5):299-303. |
[12] | SENKOV O N, MILLER J D, MIRACLE D B, et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 2015,6(1):1-10. |
[13] | ZHANG Y, ZUO T T, TANG Z, et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 2014,61:1-93. |
[14] | WEI P C, LIAO C N, WU H J, et al. Thermodynamic routes to ultralow thermal conductivity and high thermoelectric performance. Advanced Materials, 2020,32(12):1906457. |
[15] | MIRACLE D B, MILLER J D, SENKOV O N, et al. Exploration and development of high entropy alloys for structural applications. Entropy, 2014,16(1):494-525. |
[16] |
ZHANG Y, ZUO T T, CHENG Y Q, et al. High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Scientific Reports, 2013,3:1455.
URL PMID |
[17] | LUCAS M S, BELYEA D, BAUER C, et al. Thermomagnetic analysis of FeCoCrxNi alloys: magnetic entropy of high-entropy alloys. Journal of Applied Physics, 2013,113(17):17A923. |
[18] | KOZELJ P, VRTNIK S, JELEN A, et al. Discovery of a superconducting high-entropy alloy. Physical Review Letters, 2014,113(10):5. |
[19] | KAO Y F, CHEN S K, SHEU J H, et al. Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys. International Journal of Hydrogen Energy, 2010,35(17):9046-9059. |
[20] | BERARDAN D, FRANGER S, DRAGOE D, et al. Colossal dielectric constant in high entropy oxides. Physica Status Solidi-Rapid Research Letters, 2016,10(4):328-333. |
[21] | BERARDAN D, FRANGER S, MEENA A K, et al. Room temperature lithium superionic conductivity in high entropy oxides. Journal of Materials Chemistry A, 2016,4(24):9536-9541. |
[22] | SHAFEIE S, GUO S, HU Q, et al. High-entropy alloys as high-temperature thermoelectric materials. Journal of Applied Physics, 2015,118(18):184905. |
[23] | RA S. Thermodynamics of Solids. New York: John Wiley and Sons, 1972: 178. |
[24] | SONOMURA H. Internal strain energy in quaternary III-V compound alloys. Journal of Applied Physics, 1986,59(3):739-742. |
[25] | SLAUGHTER W, PETROLITO J. The linearized theory of elasticity. Applied Mechanics Reviews, 2002,55(5):B90. |
[26] |
GREAVES G N, GREER A, LAKES R S, et al. Poisson's ratio and modern materials. Nature Materials, 2011,10(11):823-837.
URL PMID |
[27] | YANG J, MEISNER G P, CHEN L. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Applied Physics Letters, 2004,85(7):1140-1142. |
[28] | MEISNER G P, MORELLI D T, HU S, et al. Structure and lattice thermal conductivity of fractionally filled skutterudites: solid solutions of fully filled and unfilled end members. Physical Review Letters, 1998,80(16):3551-3554. |
[29] |
PLIRDPRING T, KUROSAKI K, KOSUGA A, et al. Chalcopyrite CuGaTe2: a high-efficiency bulk thermoelectric material. Advanced Materials, 2012,24(27):3622-3626.
URL PMID |
[30] | CHENG N, LIU R, BAI S, et al. Enhanced thermoelectric performance in Cd doped CuInTe2 compounds. Journal of Applied Physics, 2014,115(16):163705. |
[31] | QIN Y, QIU P, LIU R, et al. Optimized thermoelectric properties in pseudocubic diamond-like CuGaTe2 compounds. Journal of Materials Chemistry A, 2016,4(4):1277-1289. |
[32] |
GASCOIN F, OTTENSMANN S, STARK D, et al. Zintl phases as thermoelectric materials: tuned transport properties of the compounds CaxYb1-xZn2Sb2. Advanced Functional Materials, 2005,15(11):1860-1864.
DOI URL |
[33] | MAO J, KIM H S, SHUAI J, et al. Thermoelectric properties of materials near the band crossing line in Mg2Sn-Mg2Ge-Mg2Si system. Acta Materialia, 2016,103:633-642. |
[34] |
LIU W, TAN X, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 2012,108(16):166601.
URL PMID |
[35] | BANERJEE S, RAMAKRISHNAN T V, DASGUPTA C. Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates. Physical Review B, 2011,83(2):024510. |
[36] | LIU W, LUKAS K C, MCENANEY K, et al. Studies on the Bi2Te3-Bi2Se3-Bi2S3 system for mid-temperature thermoelectric energy conversion. Energy & Environmental Science, 2013,6(2):552-560. |
[37] |
YAMINI S A, WANG H, GIBBS Z M, et al. Chemical composition tuning in quaternary p-type Pb-chalcogenides—a promising strategy for enhanced thermoelectric performance. Physical Chemistry Chemical Physics, 2014,16(5):1835-1840.
DOI URL PMID |
[38] |
KORKOSZ R J, CHASAPIS T C, LO S H, et al. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials. Journal of the American Chemical Society, 2014,136(8):3225-3237.
URL PMID |
[39] | HU L, ZHANG Y, WU H, et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 2018,8(29):1802116. |
[40] | ZHAO S Y, CHEN R, LI J Q, et al. Synergistic effects on thermoelectric properties of Sn0.5Ge0.4875Te with Pb alloying. Journal of Alloys and Compounds, 2019,777:1334-1339. |
[41] | POSFAI M, BUSECK P R. Djurleite, digenite, and chalcocite: intergrowths and transformations. American Mineralogist, 1994,79(3/4):308-315. |
[42] | GULAY L, DASZKIEWICZ M, STROK O, et al. Crystal structure of Cu2Se. Chemistry of Metals and Alloys, 2011,4(3/4):200-205. |
[43] | PASHINKIN A, FEDOROV V. Phase equilibria in the Cu-Te system. Inorganic Materials, 2003,39(6):539-554. |
[44] |
HE Y, LU P, SHI X, et al. Ultrahigh thermoelectric performance in mosaic crystals. Advanced Materials, 2015,27(24):3639-3644.
URL PMID |
[45] | ZHAO K, QIU P, SONG Q, et al. Ultrahigh thermoelectric performance in Cu2-ySe0.5S0.5 liquid-like materials. Materials Today Physics, 2017,1:14-23. |
[46] | ZHAO K, ZHU C, QIU P, et al. High thermoelectric performance and low thermal conductivity in Cu2-yS1/3Se1/3Te1/3 liquid-like materials with nanoscale mosaic structures. Nano Energy, 2017,42:43-50. |
[47] |
WELDERT K S, ZEIER W G, DAY T W, et al. Thermoelectric transport in Cu7PSe6 with high copper ionic mobility. Journal of the American Chemical Society, 2014,136(34):12035-12040.
DOI URL PMID |
[48] | CHEN R, QIU P, JIANG B, et al. Significantly optimized thermoelectric properties in high-symmetry cubic Cu7PSe6 compounds via entropy engineering. Journal of Materials Chemistry A, 2018,6(15):6493-6502. |
[49] | JIANG B, QIU P, CHEN H, et al. Entropy optimized phase transitions and improved thermoelectric performance in n-type liquid-like Ag9GaSe6 materials. Materials Today Physics, 2018,5:20-28. |
[50] |
JIANG B, QIU P, CHEN H, et al. An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performance. Chemical Communications, 2017,53(85):11658-11661.
URL PMID |
[51] | PEI Y, LALONDE A, IWANAGA S, et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011,4(6):2085-2089. |
[52] | LI J, ZHANG X, CHEN Z, et al. Low-symmetry rhombohedral GeTe thermoelectrics. Joule, 2018,2(5):976-987. |
[53] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014,508(7496):373-377.
URL PMID |
[54] | FAN Z, WANG H, WU Y, et al. Thermoelectric performance of PbSnTeSe high-entropy alloys. Materials Research Letters, 2017,5(3):187-194. |
[55] |
WU Y, NAN P, CHEN Z, et al. Manipulation of band degeneracy and lattice strain for extraordinary PbTe thermoelectrics. Research, 2020,2020:8151059.
DOI URL PMID |
[56] | RAOUX S, MUñOZ B, CHENG H Y, et al. Phase transitions in Ge-Te phase change materials studied by time-resolved X-ray diffraction. Applied Physics Letters, 2009,95(14):143118. |
[57] |
ALPTEKIN S. Structural phase transition of SnSe under uniaxial stress and hydrostatic pressure: an ab initio study. Journal of Molecular Modeling, 2011,17(11):2989-2994.
DOI URL PMID |
[58] | MUIR J A, BEATO V. Phase transformations in the system GeSe- GeTe. Journal of the Less Common Metals, 1973,33(3):333-340. |
[59] | WIEDEMEIER H, SIEMERS P. The thermal expansion and high temperature transformation of GeSe. Zeitschrift für Anorganische und Allgemeine Chemie, 1975,411(1):90-96. |
[60] | SIST M, GATTI C, NØRBY P, et al. High-temperature crystal structure and chemical bonding in thermoelectric germanium selenide (GeSe). Chemistry-A European Journal, 2017,23(28):6888-6895. |
[61] | HUANG Z, MILLER S A, GE B, et al. High thermoelectric performance of new rhombohedral phase of GeSe stabilized through alloying with AgSbSe2. Angewandte Chemie International Edition, 2017,129(45):14301-14306. |
[62] |
QIU Y, JIN Y, WANG D, et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. Journal of Materials Chemistry A, 2019,7(46):26393-26401.
DOI URL |
[63] |
ZHANG R Z, GUCCI F, ZHU H, et al. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorganic Chemistry, 2018,57(20):13027-13033.
DOI URL PMID |
[64] | FAN Z, WANG H, WU Y, et al. Thermoelectric high-entropy alloys with low lattice thermal conductivity. RSC Advances, 2016,6(57):52164-52170. |
[65] |
RAPHEL A, VIVEKANANDHAN P, KUMARAN S. High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering. Materials Letters, 2020,269:127672.
DOI URL |
[66] | YAN J, LIU F, MA G, et al. Suppression of the lattice thermal conductivity in NbFeSb-based half-Heusler thermoelectric materials through high entropy effects. Scripta Materialia, 2018,157:129-134. |
[67] | SAKURADA S, SHUTOH N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Applied Physics Letters, 2005,86(8):082105. |
[68] | VOLYKHOV A, YASHINA L, TAMM M, et al. Phase equilibria in ternary reciprocal systems based on IV-VI compounds. Inorganic Materials 2009,45(9):968-974. |
[69] |
WANG Y Y, ROGADO N S, CAVA R J, et al. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4. Nature, 2003,423(6938):425-428.
DOI URL PMID |
[70] | EMIN D. Enhanced Seebeck coefficient from carrier-induced vibrational softening. Physical Review B, 1999,59(9):6205-6210. |
[71] |
HAN C G, QIAN X, LI Q K, et al. Giant thermopower of ionic gelatin near room temperature. Science, 2020,368(6495):1091-1098.
URL PMID |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||