Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (6): 639-646.DOI: 10.15541/jim20140623
• Orginal Article • Previous Articles Next Articles
CHEN Geng1,2, LIU Tao-Xiang1,2, TANG Xin-Feng2, SU Xian-Li2, YAN Yong-Gao2
Received:
2014-12-01
Revised:
2015-02-04
Published:
2015-06-04
Online:
2015-05-22
About author:
CHEN Geng. E-mail: chengeng17@126.com
Supported by:
CLC Number:
CHEN Geng, LIU Tao-Xiang, TANG Xin-Feng, SU Xian-Li, YAN Yong-Gao. Optimization of Electrode Material and Connecting Process for Mg-Si-Sn Based Thermoelectric Device[J]. Journal of Inorganic Materials, 2015, 30(6): 639-646.
Fig. 1 Back scattering images and line profiles of the interface between Ni and Mg-Si-Sn by EMPA (a-b) BSE photographs of the joint between Ni and Mg-Si-Sn; (c) BSE photographs of Mg-Si-Sn; (d-e) Line profiles of the joint Arrows point to the cracks
Fig. 3 Pictures of samples sintered by one step SPS (a) Sectional view of Cu/Mg-Si-Sn; (b) Sectional view of Ag/Mg-Si- Sn; (c) Mg-Si-Sn of Al/Mg-Si-Sn
Fig. 4 Back scattering images and line profiles of the interface between Cu and Mg-Si-Sn by EMPA (a-c) Holding for 10 min and with cooling rate of 20 K/min; (a) BSE photograph; (b-c) line profiles; Inset photograph in (a) is BSE photograph of the joint with rapid cooling process; (d-f) Holding for 20 min and with cooling rate of 10 K/min; (d) BSE photograph; (e-f) line profiles
Fig. 5 Back scattering images and line profiles of the interface between Ag and Mg-Si-Sn by EMPA (a-c) Holding for 5 min with cooling rate of 20 K/min; (a) BSE photograph; (b-c) Line profiles; Circles represent the region of Ag and Mg rich area; (d-f) Holding for 10 min with cooling rate of 10 K/min; (d) BSE photograph; (e-f) Line profiles
Fig. 6 Back scattering images and line profiles of the interface between Al and Mg-Si-Sn by EMPA (a-c) Holding for 5 min with cooling rate of 20 K/min; (a) BSE photograph; (b-c) Line profiles (d-f) Holding for 10 min with cooling rate of 10 K/min; (d) BSE photograph; (e-f) Line profiles
[1] | VINING C B.Chapter 23 Thermoelectric Properties of Silicides. CRC handbook of thermoelectrics. Raton London New York Washington, D C: CRC Press LLC, 1995: 277-285. |
[2] | HAN Z M, ZHANG X, LU Q M, et al.Preparation and thermoelectric properties of (Mg2Si1-xSbx)0.4-(Mg2Sn)0.6 alloys.Journal of Inorganic Materials, 2012, 27(8): 822-826. |
[3] | ZAITSEV V K, FEDOROV M I, GURIEVA E A, et al.Highly effective Mg2Si1-xSnx thermoelectrics.Physical Review B, 2006, 74(4): 045207. |
[4] | NODA Y, KON H, FURUKAWA Y, et al.Preparation and thermoelectric properties of Mg2Si1-xGex (x=0-0.4) solid solution semiconductors. Materials Transactions, JIM, 1992, 33(9): 845-850. |
[5] | SONG R B, LIU Y Z, AIZAWA T.Solid state synthesis and thermoelectric properties of Mg-Si-Ge system.Journal of Materials Science & Technology, 2005, 21(5): 618-622. |
[6] | FEDOROV M I, ZAITSEV V K, EREMIN I S, et al.Transport properties of Mg2X0.4Sn0.6 solid solutions (x=Si, Ge) with p-type conductivity.Physics of the Solid State, 2006, 48(8): 1486-1490. |
[7] | SAKAMOTO T, IIDA T, MATSUMOTO A, et al.Thermoelectric characteristics of a commercialized Mg2Si source doped with Al, Bi, Ag and Cu.Journal of Electronic Materials, 2010, 39(9): 1708-1713. |
[8] | LIU W, TANG X F, LI H, et al.Optimized thermoelectric properties of Sb-doped Mg2(1+z)Si0.5-ySn0.5Sby through adjustment of the Mg content.Chemistry of Materials, 2011, 23(23): 5256-5263. |
[9] | TAN X J, LIU W, LI H, et al.Multiscale calculations of thermoelectric properties of n-type Mg2Si1-xSnx solid solutions.Physical Review B, 2012, 85(20): 205212. |
[10] | LIU W.Optimization of Thermoelectric Properties of n-type Mg2Si1-xSnx Based Materials Through Doping As Well As the Adjustment and Cotrol of Band Structure. Wuhan: Wuhan University of Technology. PhD Thesis, 2012: 28. |
[11] | SAKAMOTO T, IIDA T, TAGUCHI Y, et al.Examination of a thermally viable structure for an unconventional uni-leg Mg2Si thermoelectric power generator.Journal of Electronic Materials, 2012, 41(6): 1429-1435. |
[12] | NEMOTO T, IIDA T, SATO J, et al. Power generation characteristics of Mg2Si uni-leg thermoelectric generator. Journal of Electronic Materials, 2012, 41(6): 1312-1316. |
[13] | SAKAMOTO T, IIDA T, KUROSAKI S, et al.Thermoelectric behavior of Sb- and Al-doped n-type Mg2Si device under large temperature differences.Journal of Electronic Materials, 2011, 40(5): 629-634. |
[14] | SAKAMOTO T, IIDA T, FUKUSHIMA N, et al.Thermoelectric properties and power generation characteristics of sintered undoped n-type Mg2Si.Thin Solid Films, 2011, 519(24): 8528-8531. |
[15] | SAKAMOTO T, IIDA T, HONDA Y, et al.The use of ransition-metal silicides to reduce the contact resistance between the lectrode and sintered n-type Mg2Si.Journal of Electronic aterials, 2012, 41(6): 1805-1810. |
[16] | NEMOTO T, IIDA T, SATO J, et al.Characteristics of a pin-fin structure thermoelectric uni-leg device using a commercial n-type Mg2Si source.Journal of Electronic Materials, 2010, 39(9): 1572-1578. |
[17] | FAN J F, CHEN L D, BAI S Q, et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer.Materials Letters, 2004, 58: 3876-3878. |
[18] | WOJCIECHOWSKI K T, ZYBALA R, MANIA R.High temperature CoSb3-Cu junctions.Microelectronics Reliability, 2011, 51(7): 1198-1202. |
[19] | ZHAO D G, GENG H R, TENG X Y.Fabrication and reliability evaluation of CoSb3/W-Cu thermoelectric element.Journal of Alloys and Compounds, 2012, 517: 198-203. |
[20] | ZHAO D G, LI X Y, HE L, et al.High temperature reliability evaluation of CoSb3/electrode thermoelectric joints.Intermetallics, 2009, 17(3): 136-141. |
[21] | ZHAO D G, LI X Y, HE L, et al.Interfacial evolution behavior and reliability evaluation of Cosb3/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging.Journal of Alloys and Compounds, 2009, 477(1/2): 425-431. |
[22] | ZHAO D G, Li X Y, JIANG W, et al.Fabrication of CoSb3 /MoCu thermoelectric joint by one-step SPS and evaluation.Journal of Inorganic Materials, 2009, 24(3): 545-548. |
[1] | CHENG Jun, ZHANG Jiawei, QIU Pengfei, CHEN Lidong, SHI Xun. Preparation and Thermoelectric Transport Properties of P-doped β-FeSi2 [J]. Journal of Inorganic Materials, 2024, 39(8): 895-902. |
[2] | CHEN Hao, FAN Wenhao, AN Decheng, CHEN Shaoping. Improvement of Thermoelectric Performance of SnTe by Energy Band Optimization and Carrier Regulation [J]. Journal of Inorganic Materials, 2024, 39(3): 306-312. |
[3] | ZHANG Zhe, SUN Tingting, WANG Lianjun, JIANG Wan. Flexible Thermoelectric Films with Different Ag2Se Dimensions: Performance Optimization and Device Integration [J]. Journal of Inorganic Materials, 2024, 39(11): 1221-1227. |
[4] | MENG Yuting, WANG Xuemei, ZHANG Shuxian, CHEN Zhiwei, PEI Yanzhong. Single- and Two-band Transport Properties Crossover in Bi2Te3 Based Thermoelectrics [J]. Journal of Inorganic Materials, 2024, 39(11): 1283-1291. |
[5] | SU Haojian, ZHOU Min, LI Laifeng. Optimization of Thermoelectric Properties of SnTe via Multi-element Doping [J]. Journal of Inorganic Materials, 2024, 39(10): 1159-1166. |
[6] | XIAO Yani, LYU Jianan, LI Zhenming, LIU Mingyang, LIU Wei, REN Zhigang, LIU Hongjing, YANG Dongwang, YAN Yonggao. Hygrothermal Stability of Bi2Te3-based Thermoelectric Materials [J]. Journal of Inorganic Materials, 2023, 38(7): 800-806. |
[7] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[8] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[9] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[10] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[11] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[12] | JIN Min, BAI Xudong, ZHANG Rulin, ZHOU Lina, LI Rongbin. Metal Sulfide Ag2S: Fabrication via Zone Melting Method and Its Thermoelectric Property [J]. Journal of Inorganic Materials, 2022, 37(1): 101-106. |
[13] | ZHANG Cencen, WANG Xue, PENG Liangming. Thermoelectric Transport Characteristics of n-type (PbTe)1-x-y(PbS)x(Sb2Se3)y Systems via Stepwise Addition of Dual Components [J]. Journal of Inorganic Materials, 2021, 36(9): 936-942. |
[14] | YANG Qingyu, QIU Pengfei, SHI Xun, CHEN Lidong. Application of Entropy Engineering in Thermoelectrics [J]. Journal of Inorganic Materials, 2021, 36(4): 347-354. |
[15] | WANG Yue, CUI Changsong, WANG Shiwei, ZHAN Zhongliang. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis [J]. Journal of Inorganic Materials, 2021, 36(12): 1323-1329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||