Journal of Inorganic Materials ›› 2015, Vol. 30 ›› Issue (12): 1233-1242.DOI: 10.15541/jim20150244
• Orginal Article • Next Articles
CHEN Ting1, 2, JIANG Wan2, 3, JIANG Wei-Hui1, 2, LIU Jian-Min2, ZHANG Xiao-Jun1, XIE Zhi-Xiang1
Received:
2015-05-21
Revised:
2015-07-05
Published:
2015-12-20
Online:
2015-11-24
About author:
CHEN Ting. E-mail: chenting@jci.edu.cn
Supported by:
CLC Number:
CHEN Ting, JIANG Wan, JIANG Wei-Hui, LIU Jian-Min, ZHANG Xiao-Jun, XIE Zhi-Xiang. Research Progress in Improvement of Oxygen Permeation Properties for Dual-phase Mixed Conducting Membranes[J]. Journal of Inorganic Materials, 2015, 30(12): 1233-1242.
Fig. 1 Schematic illustration of oxygen transport in ionic- mixed conductor composite membrane (a) and ionic-electronic conductor composite membrane (b)[21]
Fig. 2 (a) Schematic illustration of the synthesis of SDC-PBCO membrane via coating strategy, (b) SEM image and EDX spectra of SDC@PBCO powders, and (c) BSEM image of the membrane surface[43]
Fig. 5 SEM images of YSZ-LSM assymatric dual-phase membranes prepared by (a) phase-inversion tape-casting and (b) tape-casting with pore former addition[63]
[1] | PENA-MARTINEZ J, MARRERO-LOPEZ D, RUIZ-MORALES J C, et al. On Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.1-0.9) oxides as cathode materials for La0.9Sr0.1Ga0.8Mg0.2O2.85 based IT-SOFCs.Int. J. Hydrogen Energy, 2009, 34(23): 9486-9495. |
[2] | TERAOKA Y, ZHUANG H M, FURUKAWA S, et al.Oxygen permeation through perovskite-type oxides.Chem. Lett., 1985, 14: 1743-1746. |
[3] | TAI L W, NASRALLAH M M, ANDERSON H U, et al.Structure and electrical properties of La1-xSrxCo1-yFeyO3. II. The system La1-xSrxCo0.2Fe0.8O3.Solid State Ionics, 1995, 76(3/4): 273-283. |
[4] | PEI S, KLEEFISCH M S, KOBYLINSKI T P, et al.Failure mechanisms of ceramic membrane reactors in partial oxidation of methane to synthesis gas.Catal. Lett., 1994, 30(1/4): 201-212. |
[5] | KRUIDHOF H, BOUWMEESTER H J M, DOOM R H E V, et al. Influence of order-disorder transitions on oxygen permeability through selected nonstoichiometric perovskite-type oxides. Solid State Ionics, 1993, 63-65: 816-822. |
[6] | CHEN C S, LIU W, XIE S, et al.A novel intermediate-temperature oxygen-permeable membrane based on the high-Tc superconductor Bi2Sr2CaCu2O8.Adv. Mater., 2000, 12(15): 1132-1134. |
[7] | THOROGOOD R M, SRINIVASAN R, YEE T F, et al. Composite Mixed Conductor Membranes for Producing Oxygen. United States Patent, 5240480. 1993. |
[8] | WAGNER C, SCHOTTKY W.Theory of arranged mixed phases.Z. Physik. Chem. B, 1930, 11(1): 163-210. |
[9] | KOBAYASHI K, NISHIOKA M, SATO K, et al.Synthesis and oxygen permeation properties of 75mol% Ce0.75Nd0.25O1.875-25mol% Nd1.8Ce0.2CuO4 composite.J. Solid. State. Electrochem., 2006, 10(8): 629-634. |
[10] | DOU S, MASSON C R, PACEY P D.Mechanism of oxygen permeation through lime-stabilized zirconia.J. Electrochem. Soc., 1985, 132(8): 1843-1849. |
[11] | ZHU X F, LIU H Y, CONG Y, et al.Permeation model and experimental investigation of mixed conducting membranes.AIChE J., 2012, 58(6): 1744-1754. |
[12] | YOON J S, YOON M Y, LEE E J, et al.Influence of Ce0.9Gd0.1O2-δ particles on microstructure and oxygen permeability of Ba0.5Sr0.5 Co0.8Fe0.2O3-δ composite membrane.Solid State Ionics, 2010, 181(29-30): 1387-1393. |
[13] | LIA S G, JIN W Q, XU N P, et al.Mechanical strength, and oxygen and electronic transport properties of SrCo0.4Fe0.6O3-δ-YSZ membranes.J. Membr. Sci., 2001, 186(2): 195-204. |
[14] | MAZANEC T J, CABLE T L, FRYE J G. Electrocatalytic cells for chemical reaction. Solid State Ionics, 1992, 53-56: 111-118. |
[15] | CHEN C S, BURGGRAAF A J.Stabilized bismuth oxide-noble metal mixed conducting composites as high temperature oxygen separation membranes.J. Appl. Electrochem., 1999, 29(3): 355-360. |
[16] | NITHYANANTHAM T, BISWAS S, NAGENDRA N, et al.Studies on mechanical behavior of LSFT-CGO dual-phase membranes at elevated temperatures in ambient air and slightly reducing environments.Ceram. Int., 2014, 40(6): 7783-7790. |
[17] | YI J X, ZUO Y B, LIU W, et al.Oxygen permeation through a Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ dual-phase composite membrane.J. Membr. Sci., 2006, 280(1/2): 849-855. |
[18] | WANG B, ZHAN M C, ZHU D C, et al.Oxygen permeation and stability of Zr0.8Y0.2O0.9-La0.8Sr0.2CrO3-δ dual-phase composite.J. Solid State Electrochem., 2006, 10(8): 625-628. |
[19] | ZHU X F, YANG W S.Mixed conductor oxygen permeable membrane reactors. Chin J. Catal., 2009, 30(8): 801-816. |
[20] | ZHU X F, YANG W S.Composite membrane based on ionic conductor and mixed conductor for oxygen permeation.AIChE J., 2008, 54(3): 665-672. |
[21] | BALAGUER M, FAYOS-GARCIA J, SOLIS C, et al.Fast oxygen separation through SO2- and CO2-stable dual-phase membrane based on NiFe2O4-Ce0.8Tb0.2O2-δ.Chem. Mater., 2013, 25(24): 4986-4993. |
[22] | SAMSON A J, SOGAARD M, HENDRIKSEN P V.(Ce, Gd)O2-δ- based dual phase membranes for oxygen separation.J. Membr. Sci., 2014, 470: 178-188. |
[23] | ZHU X F, LI M R, LIU H Y. Design and experimental investigation of oxide ceramic dual-phase membranes. J. Membr. Sci., 2012, 394-395: 120-130. |
[24] | LI H B, LIU Y, ZHU X F, et al.Oxygen permeation through Ca-contained dual-phase membranes for oxyfuel CO2 capture.Sep. Purif. Technol., 2013, 114: 31-37. |
[25] | KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al.Oxygen transport in Ce0.8Gd0.2O2-δ-based composite membranes.Solid State Ionics, 2003, 160(3-4): 247-258. |
[26] | XUE J, ZHENG Q, WEI Y Y, et al.Dual phase composite oxide of Ce0.8Gd0.2O2-δ-Ba0.5Sr0.5Fe0.2Co0.8O3-δ with excellent oxygen permeation.Ind. Eng. Chem. Res., 2012, 51(12): 4703-4709. |
[27] | XUE J, LIAO Q, WEI Y Y, et al.A CO2-tolerance oxygen permeable 60Ce0.9Gd0.1O2-δ-40Ba0.5Sr0.5Fe0.2Co0.8O3-δ dual phase membrane.J. Membr. Sci., 2013, 443: 124-130. |
[28] | KIM S K, SHIN M J, RUFNER J, et al.Sr0.95Fe0.5Co0.5O3-δ-Ce0.9Gd0.1O2-δ dual-phase membrane: oxygen permeability, phase stability, and chemical compatibility.J. Membr. Sci., 2014, 462: 153-159. |
[29] | CHEN C S, KRUIDHOF H, BOUWMEESTER H J M, et al. Oxygen permeation through oxygen ion oxide-noble metal dual phase composites. Solid State Ionics, 1996, 86-88(1): 569-572. |
[30] | CHEN T, ZHAO H L, XU N S, et al.Synthesis and oxygen permeation properties of a Ce0.8Sm0.2O2-δ-LaBaCo2O5+δ dual-phase composite membrane.J. Membr. Sci., 2011, 370(1/2): 158-165. |
[31] | CHEN T, ZHAO H L, XIE Z X, et al.Electrical conductivity and oxygen permeability of Ce0.8Sm0.2O2-δ-PrBaCo2O5+δ dual-phase composites.Int. J. Hydrogen Energy, 2012, 37(6): 5277-5285. |
[32] | CHEN T, ZHAO H L, XIE Z X, et al.Oxygen permeability of Ce0.8Sm0.2O2-δ-LnBaCo2O5+δ (Ln=La, Nd, Sm, and Y) dual- phase ceramic membranes.Ionics, 2015, 21(6): 1683-1692. |
[33] | CHOI M B, JEON S Y, HWANG H J, et al.Composite of Ce0.8Gd0.2O2-δ and GdBaCo2O5+δ as oxygen separation membranes.Solid State Ionics, 2010, 181(37/38): 1680-1684. |
[34] | LUO L F, CHENG H W, LI G S, et al.Oxygen permeability and CO2-tolerance of Ce0.8Gd0.2O2-δ-LnBaCo2O5+δ dual-phase membranes. J. Energy Chem., 2015, 24(1): 15-22. |
[35] | JIANG B, CHENG H W, LUO L F, et al.Oxygen permeation and stability of Ce0.8Gd0.2O2-δ-PrBaCo2-xFexO5+δ dual-phase composite membranes.J. Mater. Sci. Technol., 2014, 30(12): 1174-1180. |
[36] | KIM J, LIN Y S.Palladium-modified yttria-stabilized zirconia membranes.Ind. Eng. Chem. Res., 2000, 39(6): 2124-2126. |
[37] | WU Z L, LIU M L.Modelling of ambipolar transport properties of composite mixed ionic-electronic conductors.Solid State Ionics, 1996, 93(1/2): 65-84. |
[38] | KIM J, LIN Y S.Synthesis and oxygen permeation properties of ceramic-metal dual-phase membranes.J. Membr. Sci., 2000, 167(1): 123-133. |
[39] | CHEN C S, BOUKAMP B A, BOUWMEESTER H J M, et al. Microstructural development, electrical properties and oxygen permeation of zirconia-palladium composites.Solid State Ionics, 1995, 76(1/2): 23-28. |
[40] | KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al.Oxygen permeability of Ce0.8Gd0.2O2-δ-La0.7Sr0.3MnO3-δ composite.J. Electrochem. Soc., 2000, 147(7): 2814-2821. |
[41] | LI H B, ZHU X F, LIU Y, et al.Comparative investigation of dual-phase membranes containing cobalt and iron-based mixed conducting perovskite for oxygen permeation.J. Membr. Sci., 2014, 462: 170-177. |
[42] | WANG H H, YANG W S, Cong Y, et al.Structure and oxygen permeability of a dual-phase membrane.J. Membr. Sci. 2003, 224(1/2): 107-115. |
[43] | CHEN T, ZHAO H L, XIE Z X, et al.Ce0.8Sm0.2O2-δ-PrBaCo2O5+δ dual-phase membrane: novel preparation and improved oxygen permeability.J. Power Sources, 2013, 223: 289-292. |
[44] | ZHU X F, WANG H H, YANG W S.Relationship between homogeneity and oxygen permeability of composite membranes.J. Membr. Sci., 2008, 309(1/2): 120-127. |
[45] | LI Q M, ZHU X F, HE Y F, et al.Effects of sintering temperature on properties of dual-phase oxygen permeable membranes.J. Membr. Sci., 2011, 367(1/2): 134-140. |
[46] | ZHU T L, YANG Z B, HAN M F.Evaluation of La0.7Ca0.3Cr0.95Zn0.05O3-δ- Gd0.1Ce0.9O2-δ dual-phase material and its potential application in oxygen transport membrane.J. Mater. Sci. Technol., 2014, 30(10): 954-958. |
[47] | KAGOMIYA I, IIJIMA T, TAKAMURA H.Oxygen permeability of nanocrystalline Ce0.8Gd0.2O1.9-CoFe2O4 mixed-conductive films.J. Membr. Sci., 2006, 286(1/2): 180-184. |
[48] | LUO H X, EFIMOV K, JIANG H Q, et al.CO2-stable and cobalt-free dual-phase membrane for oxygen separation.Angew. Chem. Int. Ed., 2011, 50(3): 759-763. |
[49] | LUO H X, JIANG H Q, KLANDE T, et al. Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4-δ-60Ce0.9Pr0.1O2-δ for CO2 capture via an oxy-fuel process. J. Membr. Sci., 2012, 423-424: 450-458. |
[50] | KOBAYASHI K, TSUNODA T.Oxygen permeation and electrical transport properties of 60vol% Bi1.6Y0.4O3 and 40vol% Ag composite prepared by the Sol-Gel method.Solid State Ionics, 2004, 175(1-4): 405-408. |
[51] | ZHU X F, LI Q M, HE Y F, et al.Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors.J. Membr. Sci., 2010, 360(1/2): 454-460. |
[52] | ZHU X F, LI Q M, CONG Y, et al.Syngas generation in a membrane reactor with a highly stable ceramic composite membrane.Catal. Commun., 2008, 10(3): 309-312. |
[53] | ZHU X F, LIU Y, CONG Y, et al.Ce0.85Sm0.15O1.925-Sm0.6Sr0.4Al0.3Fe0.7O3 dual-phase membranes: One-pot synthesis and stability in a CO2 atmosphere.Solid State Ionics, 2013, 253: 57-63. |
[54] | LIU Z K, ZHANG G R, DONG X L, et al. Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. J. Membr. Sci., 2012, 415-416: 313-319. |
[55] | ABRUTIS A, BARTASYTE A, GARCIA G, et al.Metal-organic chemical vapour deposition of mixed-conducting perovskite oxide layers on monocrystalline and porous ceramic substrates.Thin Solid Films, 2004, 449(1/2): 94-99. |
[56] | CHANG X F, ZHANG C, JIN W Q, et al.Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes.J. Membr. Sci., 2006, 285(1/2): 232-238. |
[57] | CAO Z W, ZHU X F, LI W P, et al.Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation.Mater. Lett., 2015, 147: 88-91. |
[58] | CHEN T, ZHAO H L, XIE Z X, et al.Improved oxygen permeability of Ce0.8Sm0.2O2-δ-PrBaCo2O5+δ dual-phase membrane by surface-modifying porous layer.Int. J. Hydrogen Energy, 2012, 37(24): 19133-19137. |
[59] | ZHU X F, LIU H Y, LI Q M, et al.Unsteady-state permeation and surface exchange of dual-phase membranes.Solid State Ionics, 2011, 185(1): 27-31. |
[60] | KOZHUKHAROV V, MACHKOVA M, BRASHKOVA N, et al.Sol-Gel route and characterization of supported perovskites for membrane application.J. Sol-Gel Sci. Technol., 2003, 26(1/2/3): 753-757. |
[61] | LI Q M, ZHU X F, YANG W S.Single-step fabrication of asymmetric dual-phase composite membranes for oxygen separation.J. Membr. Sci., 2008, 325(1): 11-15. |
[62] | LI Q M, LI F.Preparation of self-supported dual-phase oxygen permeation membranes via chemical etching method.Mater. Res. Bull., 2013, 48(3): 1160-1165. |
[63] | HE W, HUANG H, GAO J F, et al.Phase-inversion tape casting and oxygen permeation properties of supported ceramic membranes.J. Membr. Sci., 2014, 452: 294-299. |
[64] | HUANG H, CHENG S Y, GAO J F, et al.Phase-inversion tape-casting preparation and significant performance enhancement of Ce0.9Gd0.1O1.95-La0.6Sr0.4Co0.2Fe0.8O3-δ dual-phase asymmetric membrane for oxygen separation.Mater. Lett., 2014, 137: 245-248. |
[65] | FANG W, GAO J F, CHEN C S.La0.8Sr0.2Cr0.5Fe0.5O3-δ (LSCF)- Zr0.8Y0.2O2-δ (YSZ) based multilayer membrane for CO2 decomposition.Ceram. Int., 2013, 39(6): 7269-7272. |
[66] | FANG W, ZHANG Y, GAO J F, et al.Oxygen permeability of asymmetric membrane of functional La0.8Sr0.2Cr0.5Fe0.5O3-δ (LSCrF)- Zr0.8Y0.2O2-δ (YSZ) supported on porous YSZ.Ceram. Int., 2014, 40(1): 799-803. |
[67] | SHAO X, DONG D H, PARKINSON G, et al.Improvement of oxygen permeation through microchanneled ceramic membranes.J. Membr. Sci., 2014, 454: 444-450. |
[68] | WANG Y F, HAO H S, JIA J F, et al.Improving the oxygen permeability of Ba0.5Sr0.5Co0.8Fe0.2O3-δ membranes by a surface-coating layer of GdBaCo2O5+δ.J. Eur. Ceram. Soc., 2008, 28(16): 3125-3130. |
[69] | JOO J H, PARK G S, YOO C Y, et al. Contribution of the surface exchange kinetics to the oxygen transport properties in Gd0.1Ce0.9O2-δ- La0.6Sr0.4Co0.2Fe0.8O3-δ dual-phase membrane. Solid State Ionics, 2013, 253: 64-69. |
[70] | JOO J H, YUN K S, LEE Y, et al.Dramatically enhanced oxygen fluxes in fluorite-rich dual-phase membrane by surface modification.Chem. Mater., 2014, 26(15): 4387-4394. |
[71] | SUM M, CHEN X W, HONG L.Influence of the interfacial phase on the structural integrity and oxygen permeability of a dual-phase membrane.ACS Appl. Mater. Interfaces, 2013, 5(18): 9067-9074. |
[72] | WANG B, YI J X, WINNUBST L, et al.Stability and oxygen permeation behavior of Ce0.8Sm0.2O2-δ-La0.8Sr0.2CrO3-δ composite membrane under large oxygen partial pressure gradients.J. Membr. Sci., 2006, 286(1/2): 22-25. |
[73] | LUO Y L, GAO J F.Preparation of La0.8Sr0.2Cr0.5Fe0.5O3-δ- Zr0.84Y0.16O1.92 asymmetric ceramic oxygen-permeable membrane by gelcasting.Chin. J. Spectrosc. Lab., 2012, 29(4): 2346-2350. |
[74] | WANG H H, WERTH S, SCHIESTEL T, et al.Perovskite hollow- fiber membranes for the production of oxygen-enriched air.Angew. Chem. Int. Ed., 2005, 44(42): 6906-6909. |
[75] | CHEN X Z, YU L H, LIU Q S, et al.Preparation and application of perovskite hollow fiber oxygen permeable membrane.J. Inorg. Mater., 2008, 23(6): 1216-1220. |
[76] | THURSFIELD A, METCALFE I S.Methane oxidation in a mixed ionic-electronic conducting ceramic hollow fibre reactor module.J. Solid State Electrochem., 2006, 10(8): 604-616. |
[77] | LIU S, LIU M, SHAO Z, et al.From chelating precursor to perovskite oxides and hollow fiber membranes.J. Am. Ceram. Soc., 2007, 90(1): 84-91. |
[78] | JIANG H Q, WANG H H, WERTH S, et al.Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor.Angew. Chem. Int. Ed., 2008, 47(48): 9341-9344. |
[79] | LI W, LIU J J, CHEN C S.Hollow fiber membrane of yttrium- stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation.J. Membr. Sci., 2009, 340(1/2): 266-271. |
[80] | LI W, TIAN T F, SHI F Y, et al.Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ dual-phase composite hollow fiber membrane for oxygen separation.Ind. Eng. Chem. Res., 2009, 48(12): 5789-5793. |
[81] | GEFFROY P M, FOULETIER J, RICHET N, et al.Rational selection of MIEC materials in energy production processes.Chem. Eng. Sci., 2013, 87: 408-433. |
[82] | LIU T, HE W, HUANG H, et al.Ce0.8Sm0.2O1.9 -La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase hollow fiber membranes operated under different gradients.Ind. Eng. Chem. Res., 2014, 53(14): 6131-6136. |
[83] | LIU J J, LIU T, WANG W D, et al.Zr0.84Y0.16O1.92- La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase composite hollow fiber membrane targeting chemical reactor applications.J. Membr. Sci., 2012, 389: 435-440. |
[84] | LIU T, WANG Y, YUAN R H, et al.Enhancing the oxygen permeation rate of Zr0.84Y0.16O1.92-La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase hollow fiber membrane by coating with Ce0.8Sm0.2O1.9 nanoparticles. ACS Appl. Mater. Interfaces, 2013, 5(19): 9454-9460. |
[85] | TIAN T F, LI W, LIU T, et al.Preparation and oxygen permeability of Ce0.8Sm0.2O2-δ-La0.7Ca0.3CrO3-δ dual-phase composite hollow fiber membrane.Solid State Ionics, 2012, 225: 690-694. |
[86] | FANG S M, CHEN C S, WINNUBST L.Effect of microstructure and catalyst coating on the oxygen permeability of a novel CO2-resistant composite membrane.Solid State Ionics, 2011, 190(1): 46-52. |
[87] | WANG Z T, SUN W P, ZHU Z W, et al.A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane.ACS Appl. Mater. Interfaces, 2013, 5(21): 11038-11043. |
[88] | LUO H X, JIANG H Q, KLANDE T, et al.Novel cobalt-free, noble metal-free oxygen-permeable 40Pr0.6Sr0.4FeO3-δ-60Ce0.9Pr0.1O2-δ dual-phase membrane.Chem. Mater., 2012, 24(11): 2148-2154. |
[89] | LUO H X, JIANG H Q, EFIMOV K, et al.CO2-tolerant oxygen- permeable Fe2O3-Ce0.9Gd0.1O2-δ dual phase membranes.Ind. Eng. Chem. Res., 2011, 50(23): 13508-13517. |
[90] | DONG X L, JIN W Q.Mixed conducting ceramic membranes for high efficiency power generation with CO2 capture.Curr. Opin. Chem. Eng., 2012, 1(2): 163-170. |
[91] | OTHMAN N H, WU Z T, LI K.Bi1.5Y0.3Sm0.2O3-δ-based ceramic hollow fibre membranes for oxygen separation and chemical reactions.J. Membr. Sci., 2013, 432: 58-65. |
[92] | ZHANG K, ZHANG G R, LIU Z K, et al.Enhanced stability of membrane reactor for thermal decomposition of CO2 via porous- dense-porous triple-layer composite membrane.J. Membr. Sci., 2014, 471: 9-15. |
[1] | ZHU Wenjie, TANG Lu, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress on Catalytic Oxidation of Volatile Organic Compounds by Perovskite Oxides [J]. Journal of Inorganic Materials, 2025, 40(7): 735-746. |
[2] | HU Zhichao, YANG Hongyu, YANG Hongcheng, SUN Chengli, YANG Jun, LI Enzhu. Usage of the P-V-L Bond Theory in Regulating Properties of Microwave Dielectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 609-626. |
[3] | WU Qiong, SHEN Binglin, ZHANG Maohua, YAO Fangzhou, XING Zhipeng, WANG Ke. Research Progress on Lead-based Textured Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 563-574. |
[4] | ZHANG Bihui, LIU Xiaoqiang, CHEN Xiangming. Recent Progress of Hybrid Improper Ferroelectrics with Ruddlesden-Popper Structure [J]. Journal of Inorganic Materials, 2025, 40(6): 587-608. |
[5] | WU Jie, YANG Shuai, WANG Mingwen, LI Jinglei, LI Chunchun, LI Fei. Textured PT-based Piezoelectric Ceramics: Development, Status and Challenge [J]. Journal of Inorganic Materials, 2025, 40(6): 575-586. |
[6] | JIANG Kun, LI Letian, ZHENG Mupeng, HU Yongming, PAN Qinxue, WU Chaofeng, WANG Ke. Research Progress on Low-temperature Sintering of PZT Ceramics [J]. Journal of Inorganic Materials, 2025, 40(6): 627-638. |
[7] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[8] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[9] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[10] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[11] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[12] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[13] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[14] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[15] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||