[1] Uher C, Yang J, Hu S, et al. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B, 1999, 59(13): 8615-8621.
[2]Aliev F G, Kozyrkov V V, Moshchalkov V V, et al. Narrow band in the intermetallic compounds MNiSn (M = Ti, Zr, Hf). Z. Phys. B,90, 80(3): 353-357.
[3] Hohl H, Ramirez A P, Goldmann C, et al. Efficient dopants for ZrNiSn-based thermoelectric materials. J. Phys. Condens. Matter., 1999, 11(7): 1697-1709.
[4] Bhattacharya S, Tritt M T, Xia Y, et al. Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys. Appl. Phys. Lett., 2002, 81: 43-45.
[5] Bhattacharya S, Skove M J, Russell M, et al. Effect of boundary scattering on the thermal conductivity of TiNiSn-based half-Heusler alloys. Phys. Rev. B, 2008, 77(18): 184203-1-8.
[6] Sharp J W, Poon S J, Goldsmid H J. Boundary scattering and the thermoelectric figure of merit. Phys. Stat. Sol. (a), 2001, 187(2): 507-516.
[7]刘海强, 唐新峰, 王 焜, 等(LIU Hai-Qiang, et al). Ti1-x(Hf0.919Zr0.081)xNiSn的制备及热电性能. 物理学报(Acta Physica Sinica), 2006, 55(4): 2003-2007.
[8]Hasaka M, Morimura T, Sato H, et al. Thermoelectric properties of Tix(HfyZr1-y)1-xNiSn0.998Sb0.002 half-Heusler ribbons. J. Electron. Mater., 2009, 38(7): 1320-1325.
[9]Morimurat T, Hasaka M, Yoshida S, et al. Microstructures and thermoelectric properties of an annealed Ti0.5(Hf0.5Zr0.5)0.5NiSn0.998Sb0.002 ribbon. J. Electron. Mater., 2009, 38(7): 1154-1158.
[10]Yu C, Zhu T J, Xiao K, et al. Reduced grain size and improved thermoelectric properties of melt spun (Hf, Zr)NiSn half-Heusler alloys. J. Electron. Mater., 2009, DOI: 10.1007/s11664-009-1032-8.
[11] Yu C, Zhu T J, Shi R Z, et al. High-performance half-Heusler thermoelectric materials Hf1-xZrxNiSn1-ySby prepared by levitation melting and spark plasma sintering. Acta Materialia, 2009, 57(9): 2757-2764.
[12]Nolas G S, Sharp J W, Goldsmid H J. Thermoelectrics: Basic Principles and New Materials Developments. Heidelberg, Germany: Springer, 2001: 76-83. |