Journal of Inorganic Materials
• Research Letter •
YUAN Wang1,2,3, HU Jianbao1,2, Zhou Liang1,2,3, KAN Yanmei1,2, ZHANG Xiangyu1,2, DONG Shaoming1,2
Received:
2025-02-12
Revised:
2025-04-02
About author:
YUAN Wang (2001-), male, PhD candidate. E-mail: yuanwang22@mails.ucas.ac.cn
Supported by:
CLC Number:
YUAN Wang, HU Jianbao, Zhou Liang, KAN Yanmei, ZHANG Xiangyu, DONG Shaoming. Effect of Argon Atmosphere Heat Treatment on Mechanical Properties and Microstructural Evolution of Shicolon-II SiC Fibers[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250052.
[1] PADTURE N P.Advanced structural ceramics in aerospace propulsion.Nature Materials, 2016, 15(8): 804. [2] VIX-GUTERL C, EHRBURGER P.Effect of thermal treatment on the reactivity of SiC-based fibres.Journal of Materials Science, 1996, 31(20): 5363. [3] IVEKOVIĆ A, NOVAK S, DRAŽIĆ G,et al. Current status and prospects of SiCf/SiC for fusion structural applications. Journal of the European Ceramic Society, 2013, 33(10): 1577. [4] MAZERAT S, PAILLER R.Simulating the variability and scale effect for slow crack growth in Hi-Nicalon SiC-based tows: a parametric study.Journal of the European Ceramic Society, 2021, 41(14): 6834. [5] SOMMERS A, WANG Q, HAN X,et al. Ceramics and ceramic matrix composites for heat exchangers in advanced thermal systems—a review. Applied Thermal Engineering, 2010, 30(11/12): 1277. [6] WANG P R, LIU F Q, WANG H,et al. A review of third generation SiC fibers and SiCf/SiC composites. Journal of Materials Science & Technology, 2019, 35(12): 2743. [7] KATOH Y, SNEAD L L, HENAGER C H,et al. Current status and recent research achievements in SiC/SiC composites. Journal of Nuclear Materials, 2014, 455(1/2/3): 387. [8] CHOLLON G, PAILLER R, NASLAIN R,et al. Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon). Journal of Materials Science, 1997, 32(2): 327. [9] SMITH P R, GAMBONE M L, WILLIAMS D S,et al. Heat treatment effects on SiC fiber. Journal of Materials Science, 1998, 33(24): 5855. [10] SACKS M D.Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers.Journal of the European Ceramic Society, 1999, 19(13/14): 2305. [11] BHATT R T, ELDRIDGE J I.Heat treatment effects on microstructure and properties of CVI SiC/SiC composites with Sylramic™-iBN SiC fibers.Journal of the European Ceramic Society, 2023, 43(6): 2376. [12] BHATT R T, JASKOWIAK M H.Creep and cyclic durability of CVI SiC/SiC composites.Journal of the European Ceramic Society, 2024, 44(7): 4437. [13] DONG H N, GAO X G, ZHANG S,et al. Effects of heat treatment on the mechanical properties at elevated temperatures of plain-woven SiC/SiC composites. Journal of the European Ceramic Society, 2022, 42(2): 412. [14] YAJIMA S, HAYASHI J, OMORI M.Continuous silicon carbide fiber of high tensile strength.Chemistry Letters, 1975, 4(9): 931. [15] BUNSELL A R, PIANT A.A review of the development of three generations of small diameter silicon carbide fibres.Journal of Materials Science, 2006, 41(3): 823. [16] JONES R E, PETRAK D, RABE J, ,et al. SYLRAMIC™ SiC fibers for CMC reinforcement. Journal of Nuclear Materials. SYLRAMIC™ SiC fibers for CMC reinforcement. Journal of Nuclear Materials, 2000, 283/284/285/286/287: 556. [17] ZHANG Y, WU C L, WANG Y D,et al. A detailed study of the microstructure and thermal stability of typical SiC fibers. Materials Characterization, 2018, 146: 91. [18] TAKEDA M, IMAI Y, ICHIKAWA H,et al. Thermal stability of SiC fiber prepared by an irradiation- curing process. Composites Science and Technology, 1999, 59(6): 793. [19] SHA J J, PARK J S, HINOKI T,et al. Tensile properties and microstructure characterization of Hi-NicalonTM SiC fibers after loading at high temperature. International Journal of Fracture, 2006, 142(1): 1. [20] DONG S M, CHOLLON G, LABRUGÈRE C,et al. Characterization of nearly stoichiometric SiC ceramic fibres. Journal of Materials Science, 2001, 36(10): 2371. [21] YUAN Q, LI Y Q, SONG Y C.Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method.Ceramics International, 2017, 43(12): 9128. [22] BODET R, LAMON J, JIA N Y,et al. Microstructural stability and creep behavior of Si-C-O (nicalon) fibers in carbon monoxide and argon environments. Journal of the American Ceramic Society, 1996, 79(10): 2673. [23] KISTER G, HARRIS B.Tensile properties of heat-treated nicalon and hi-nicalon fibres.Composites Part A: Applied Science and Manufacturing, 2002, 33(3): 435. [24] JIA N Y, BODET R, TRESSLER R E.Effects of microstructural instability on the creep behavior of Si-C-O (nicalon) fibers in argon.Journal of the American Ceramic Society, 1993, 76(12): 3051. [25] MO R, YIN X W, YE F,et al. Mechanical and microwave absorbing properties of Tyranno® ZMI fiber annealed at elevated temperatures. Ceramics International, 2017, 43(12): 8922. [26] YOUNGBLOOD G E, LEWINSOHN C, JONES R H,et al. Tensile strength and fracture surface characterization of Hi-Nicalon™ SiC fibers. Journal of Nuclear Materials, 2001, 289(1/2): 1. [27] WILSON M, OPILA E.A review of SiC fiber oxidation with a new study of Hi-Nicalon SiC fiber oxidation.Advanced Engineering Materials, 2016, 18(10): 1698. [28] HUGUET-GARCIA J, JANKOWIAK A, MIRO S,et al. In situ TEM annealing of ion-amorphized Hi Nicalon S and Tyranno SA3 SiC fibers. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 374: 76. [29] CAO S Y, WANG J, WANG H.Formation mechanism of large SiC grains on SiC fiber surfaces during heat treatment.CrystEngComm, 2016, 18(20): 3674. [30] MORIMOTO T, OGASAWARA T.Potential strength of Nicalon™, Hi Nicalon™, and Hi Nicalon Type S™ monofilaments of variable diameters.Composites Part A: Applied Science and Manufacturing, 2006, 37(3): 405. [31] TOBIN Z, KERNS P, NISLY N,et al. Hi-NICALON™ Type S fiber tow surface desizing and decarburization via heat treatment. Ceramics International, 2021, 47(23): 33709. [32] MAH T, HECHT N L, MCCULLUM D E,et al. Thermal stability of SiC fibres (nicalon®). Journal of Materials Science, 1984, 19(4): 1191. [33] GOU Y Z, WANG H, JIAN K.Formation of carbon-rich layer on the surface of SiC fiber by sintering under vacuum for superior mechanical and thermal properties.Journal of the European Ceramic Society, 2017, 37(3): 907. [34] ZHANG S N, ZHONG Z H, HUA Y,et al. Properties of super heat-resistant silicon carbide fibres with in situ BN coating. Journal of the European Ceramic Society, 2022, 42(14): 6404. [35] GOSSET D, COLIN C, JANKOWIAK A,et al. X-ray diffraction study of the effect of high-temperature heat treatment on the microstructural stability of third-generation SiC fibers. Journal of the American Ceramic Society, 2013, 96(5): 1622. [36] BHATT R T, SOLA’ F, EVANS L J,et al. Microstructural, strength, and creep characterization of Sylramic™, Sylramic™-iBN and super Sylramic™-iBN SiC fibers. Journal of the European Ceramic Society, 2021, 41(9): 4697. [37] CHEN X H, SUN Z G, NIU X M,et al. Evolution of the structure and mechanical performance of Cansas-II SiC fibres after thermal treatment. Ceramics International, 2021, 47(19): 27217. [38] CHEN Y H, CHEN Z K, ZHANG R Q,et al. Structural evolution and mechanical properties of Cansas-III SiC fibers after thermal treatment up to 1700 ℃. Journal of the European Ceramic Society, 2021, 41(10): 5036. [39] XIAO Y, MA C L, XU H,et al. Mechanical properties and microstructural evolution of Cansas-III SiC fibers after thermal exposure in different atmospheres. Ceramics International, 2022, 48(22): 32804. [40] SHA J J, NOZAWA T, PARK J S,et al. Effect of heat treatment on the tensile strength and creep resistance of advanced SiC fibers. Journal of Nuclear Materials, 2004, 329: 592. [41] MORSCHER G N, DICARLO J A.A simple test for thermomechanical evaluation of ceramic fibers.Journal of the American Ceramic Society, 1992, 75(1): 136. [42] CAO S Y, WANG J, WANG H.High-temperature behavior and degradation mechanism of SiC fibers annealed in Ar and N2 atmospheres.Journal of Materials Science, 2016, 51(9): 4650. |
[1] | MU Haojie, ZHANG Yuanjiang, YU Bin, FU Xiumei, ZHOU Shibin, LI Xiaodong. Preparation and Properties of ZrO2 Doped Y2O3-MgO Nanocomposite Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 281-289. |
[2] | FAN Wugang, CAO Xiong, ZHOU Xiang, LI Ling, ZHAO Guannan, ZHANG Zhaoquan. Anticorrosion Performance of 8YSZ Ceramics in Simulated Aqueous Environment of Pressurized Water Reactor [J]. Journal of Inorganic Materials, 2024, 39(7): 803-809. |
[3] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
[4] | JIANG Lingyi, PANG Shengyang, YANG Chao, ZHANG Yue, HU Chenglong, TANG Sufang. Preparation and Oxidation Behaviors of C/SiC-BN Composites [J]. Journal of Inorganic Materials, 2024, 39(7): 779-786. |
[5] | ZHENG Yawen, ZHANG Cuiping, ZHANG Ruijie, XIA Qian, RU Hongqiang. Fabrication of Boron Carbide Ceramic Composites by Boronic Acid Carbothermal Reduction and Silicon Infiltration Reaction Sintering [J]. Journal of Inorganic Materials, 2024, 39(6): 707-714. |
[6] | XUE Yifan, LI Weijie, ZHANG Zhongwei, PANG Xu, LIU Yu. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth [J]. Journal of Inorganic Materials, 2024, 39(4): 399-408. |
[7] | SUN Chuan, HE Pengfei, HU Zhenfeng, WANG Rong, XING Yue, ZHANG Zhibin, LI Jinglong, WAN Chunlei, LIANG Xiubing. SiC-based Ceramic Materials Incorporating GNPs Array: Preparation and Mechanical Characterization [J]. Journal of Inorganic Materials, 2024, 39(3): 267-273. |
[8] | ZHENG Jiaqian, LU Xiao, LU Yajie, WANG Yingjun, WANG Zhen, LU Jianxi. Functional Bioadaptability in Medical Bioceramics: Biological Mechanism and Application [J]. Journal of Inorganic Materials, 2024, 39(1): 1-16. |
[9] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[10] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[11] | XIE Jiaye, LI Liwen, ZHU Qiang. Contrastive Study on in Vitro Antibacterial Property and Biocompatibility of Three Clinical Pulp Capping Agents [J]. Journal of Inorganic Materials, 2023, 38(12): 1449-1456. |
[12] | LI Jianbo, TIAN Zhen, JIANG Quanwei, YU Lifeng, KANG Huijun, CAO Zhiqiang, WANG Tongmin. Effects of Different Element Doping on Microstructure and Thermoelectric Properties of CaTiO3 [J]. Journal of Inorganic Materials, 2023, 38(12): 1396-1404. |
[13] | WU Dongjiang, ZHAO Ziyuan, YU Xuexin, MA Guangyi, YOU Zhulin, REN Guanhui, NIU Fangyong. Direct Additive Manufacturing of Al2O3-TiCp Composite Ceramics by Laser Directed Energy Deposition [J]. Journal of Inorganic Materials, 2023, 38(10): 1183-1192. |
[14] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[15] | XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration [J]. Journal of Inorganic Materials, 2022, 37(6): 636-642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||