Journal of Inorganic Materials
ZOU Minmin, LIU Jingxin, HU Haolin, ZENG Dongmei, ZHANG Ting1, ZHANG You
Received:
2025-01-15
Revised:
2025-04-19
About author:
ZOU Minmin (1985-), female, lecturer. E-mail: zouminmin@bipt.edu.cn
Supported by:
CLC Number:
ZOU Minmin, LIU Jingxin, HU Haolin, ZENG Dongmei, ZHANG Ting, ZHANG You. Electrocatalytic Hydrogen Evolution Performance of Two-dimensional Mo2CTx MXene Materials: a Review on Preparation and Application[J]. Journal of Inorganic Materials, DOI: 10.15541/jim20250023.
[1] HUANG Q.MXene: coming up roses.Journal of Inorganic Materials, 2024, 39(2): 113. [2] LI N, KONG Z, CHEN X Z, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis. Journal of Inorganic Materials, 2020, 35(7): 735. [3] GOGOTSI Y, ANASORI B.The rise of MXenes.ACS Nano, 2019, 13(8): 8491. [4] LI L, CHENG Q.Recent advances in the high performance MXenes nanocomposites.Journal of Inorganic Materials, 2024, 39(2): 153. [5] IBRAGIMOVA R, ERHART P, RINKE P, et al. Surface functionalization of 2D MXenes: trends in distribution, composition, and electronic properties. Journal of Physical Chemistry Letters, 2021, 12(9): 2377. [6] MOZAFARI M, SOROUSH M.Surface functionalization of MXenes.Materials Advances, 2021, 2(22): 7277. [7] LI M, HUANG Q.Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two-dimensional nanolaminates MXenes.Journal of Inorganic Materials, 2020, 35(1): 1. [8] PERSSON I, EL GHAZALY A, TAO Q, et al. Tailoring structure, composition, and energy storage properties of MXenes from selective etching of in-plane, chemically ordered MAX phases. Small, 2018, 14(17): e1703676. [9] WANG X, DING J, SONG W, et al. Cation vacancy clusters in Ti3C2Tx MXene induce ultra-strong interaction with noble metal clusters for efficient electrocatalytic hydrogen evolution. Advanced Energy Materials, 2023, 13(23): 2300148. [10] ZHAO X, LI W P, CAO Y, et al. Dual-atom Co/Ni electrocatalyst anchored at the surface-modified Ti3C2Tx MXene enables efficient hydrogen and oxygen evolution reactions. ACS Nano, 2024, 18(5): 4256. [11] LI Y, LAN B, GUAN B, et al. Molten salt derived Mo2CTx MXene with excellent catalytic performance for hydrogen evolution reaction. Acta Physico Chimica Sinica, 2024, 40(9): 2306031. [12] KUMAR J A, PRAKASH P, KRITHIGA T, et al. Methods of synthesis, characteristics, and environmental applications of MXene: a comprehensive review. Chemosphere, 2022, 286: 131607. [13] LEI J C, ZHANG X, ZHOU Z.Recent advances in MXene: preparation, properties, and applications.Frontiers of Physics, 2015, 10(3): 276. [14] SEH Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016, 1(3): 589. [15] SEH Z W, KIBSGAARD J, DICKENS C F,#magtechI#et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science, 2017, 355(6321): eaad4998. [16] LING C, SHI L, OUYANG Y, et al. Searching for highly active catalysts for hydrogen evolution reaction based on O-terminated MXenes through a simple descriptor. Chemistry of Materials, 2016, 28: 9026. [17] PANDEY M T, SOMMER K.Two-dimensional MXenes as catalysts for electrochemical hydrogen evolution: a computational screening study.Journal of Physical Chemistry C, 2017, 121: 13593. [18] JIN D, JOHNSON L R, RAMAN A S, et al. Computational screening of 2D ordered double transition-metal carbides (MXenes) as electrocatalysts for hydrogen evolution reaction. Journal of Physical Chemistry C, 2020, 124: 10584. [19] LI H, CHEN Y, TANG Q.Surface termination (-O, -F or -OH) and metal doping on the HER activity of Mo2CTx MXene. ChemPhysChem, 2024, 25(18): e202400255. [20] HANDOKO A D, FREDRICKSON K D, ANASORI B, et al. Tuning the basal plane functionalization of two-dimensional metal carbides (MXenes) to control hydrogen evolution activity. ACS Applied Energy Materials, 2017, 1(1): 173. [21] QU G, ZHOU Y, WU T, et al. Phosphorized MXene-phase molybdenum carbide as an earth-abundant hydrogen evolution electrocatalyst. ACS Applied Energy Materials, 2018, 1(12): 7206. [22] PAN H.Ultra-high electrochemical catalytic activity of MXenes.Scientific Reports, 2016, 6(1): 32531. [23] REN J, ZONG H, SUN Y, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction. CrystEngComm, 2020, 22(8): 1395. [24] TAN Y, YI M, ZHU Z, et al. Carbon-coated MoSe2/Mo2CTx(MXene) heterostructure for efficient hydrogen evolution. Materials Science and Engineering: B, 2021, 271: 115239. [25] HUANG S, MOCHALIN V N.Combination of high pH and an antioxidant improves chemical stability of two-dimensional transition-metal carbides and carbonitrides (MXenes) in aqueous colloidal solutions.Inorganic Chemistry, 2022, 61(26): 9877. [26] ZHAO X, VASHISTH A, BLIVIN J, et al. pH, nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Advanced Materials Interfaces, 2020, 7(20): 2000845. [27] DOO S, CHAE A, KIM D, et al. Mechanism and kinetics of oxidation reaction of aqueous Ti3C2Tx suspensions at different pHs and temperatures. ACS Applied Materials & Interfaces, 2021, 13(19): 22855. [28] WAN P, TANG Q.Theoretical progress of MXenes as electrocatalysts for the hydrogen evolution reaction.Materials Chemistry Frontiers, 2024, 8(2): 507. [29] WANG K, ZHOU Y, XU W, et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets. Ceramics International, 2016, 42(7): 8419. [30] DALL'AGNESE C, DALL'AGNESE Y, ANASORI B, et al. Oxidized Ti3C2 MXene nanosheets for dye-sensitized solar cells. New Journal of Chemistry, 2018, 42(20): 16446. [31] GUO Y, JIN S, WANG L, et al. Synthesis of two-dimensional carbide Mo2CTx MXene by hydrothermal etching with fluorides and its thermal stability. Ceramics International, 2020, 46: 19550. [32] PEERA S G, KOUTAVARAPU R, CHAO L, et al. 2D MXene nanomaterials as electrocatalysts for hydrogen evolution reaction (HER): a review. Micromachines, 2022, 13(9): 1499. [33] HANAN A, AWAN H T A, BIBI F, et al. MXenes and heterostructures-based electrocatalysts for hydrogen evolution reaction: recent developments and future outlook. Journal of Energy Chemistry, 2024, 92: 176. [34] MESHKIAN R, NäSLUND L Å, HALIM J, et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Materialia, 2015, 108: 147. [35] HALIM J, KOTA S, LUKATSKAYA M, et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016, 26(18): 3118. [36] MEI J, AYOKO G A, HU C, et al. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustainable Materials and Technologies, 2020, 25: e00156. [37] THOMAS T, PUSHPAN S, AGUILAR MARTíNEZ J A, et al. UV-assisted safe etching route for the synthesis of Mo2CTx MXene from Mo-In-C non-MAX phase. Ceramics International, 2021, 47(24): 35384. [38] UNNIKRISHNAN B, WU C W, SANGILI A, et al. Synthesis and in situ sulfidation of molybdenum carbide MXene using fluorine-free etchant for electrocatalytic hydrogen evolution reactions. Journal of Colloid and Interface Science, 2022, 628: 849. [39] JIN S, WU J, JIANG J, et al. Boosting photocatalytic performance of CdxZn1-xS for H2 production by Mo2C MXene with large interlayer distance. Journal of Materials Chemistry A, 2023, 11(11): 5851. [40] WU J, SU J, TAO W, et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Advanced Materials, 2023, 35(25): e2209954. [41] WANG F, JIN S, DU Y, et al. Preparation of Mo2CTx MXene as co-catalyst for H2 production by etching of pure/mixed HBr solution. Diamond and Related Materials, 2023, 136: 109922. [42] DEEVA E B, KURLOV A, ABDALA P M, et al. In situ XANES/XRD study of the structural stability of two-dimensional molybdenum carbide Mo2CTx: implications for the catalytic activity in the water-gas shift reaction. Chemistry of Materials, 2019, 31(12): 4505. [43] LV L P, GUO C, SUN W, et al. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small, 2018, 15(3): 1804338. [44] GUO Y, ZHANG X, JIN S, et al. Synthesis of Mo2C MXene with high electrochemical performance by alkali hydrothermal etching. Journal of Advanced Ceramics, 2023, 12(10): 1889. [45] LI G, TAN L, ZHANG Y, et al. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir, 2017, 33(36): 9000. [46] XIE X, XUE Y, LI L, et al. Surface Al leached Ti3AlC2 as a substitute for carbon for use as a catalyst support in a harsh corrosive electrochemical system. Nanoscale, 2014, 6(19): 11035. [47] LI M, LU J, LUO K, et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. Journal of the American Chemical Society, 2019, 141(11): 4730. [48] WANG Y, ZHOU B, TANG Q, et al. Ultrafast synthesis of MXenes in minutes via low-temperature molten salt etching. Advanced Materials, 2024, 36(49): 2410736. [49] ALI M A, KHATUN M R, JAHAN N, et al. Comparative study of Mo2Ga2C with superconducting MAX phase Mo2GaC: first-principles calculations. Chinese Physics B, 2017, 26(3): 033102. [50] GENG D, ZHAO X, CHEN Z, et al. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Advanced Materials, 2017, 29(35): 1700072. [51] ÖPER M, YORULMAZ U, SEVIK C, et al. Controlled CVD growth of ultrathin Mo2C (MXene) flakes. Journal of Applied Physics, 2022, 131(2): 5304. [52] RAVURI S, WROBEL P S, GORANTLA S, et al. High yield and wide lateral size growth of α-Mo2C: exploring the boundaries of CVD growth of bare MXene analogues. Nanotechnology, 2024, 35(15): 155601. [53] XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 2015, 14(11): 1135. [54] SUN W, WANG X, FENG J, et al. Controlled synthesis of 2D Mo2C/graphene heterostructure on liquid Au substrates as enhanced electrocatalytic electrodes. Nanotechnology, 2019, 30(38): 385601. [55] JEON J, PARK Y, CHOI S, et al. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide. ACS Nano, 2018, 12(1): 338. [56] ZHANG F, ZHANG Z, WANG H, et al. Plasma-enhanced pulsed-laser deposition of single-crystalline Mo2C ultrathin superconducting films. Physical Review Materials, 2017, 1(3): 034002. [57] HART J L, HANTANASIRISAKUL K, LANG A C, et al. Control of MXenes’ electronic properties through termination and intercalation. Nature Communications, 2019, 10(1): 522. [58] FENG W, WANG R, ZHOU Y, et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Advanced Functional Materials, 2019, 29: 1901942. [59] CHOI J, CHACON B, PARK H, et al. N-p-conductor transition of gas sensing behaviors in Mo2CTx MXene. ACS Sensors, 2022, 7(8): 2225. [60] LI J, ZHANG W, GE X, et al. Etching-courtesy NH4+ pre-intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox. Journal of Energy Chemistry, 2022, 72: 26. [61] JIANG W, GAO Z, SHEN M, et al. Molten salt N-modified Mo2CTx as a non-precious metal catalyst for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2024, 57: 1. [62] WU Y, WANG L, BO T, et al. Boosting hydrogen evolution in neutral medium by accelerating water dissociation with Ru clusters loaded on Mo2CTx MXene. Advanced Functional Materials, 2023, 33(16): 2214375. [63] LIANG J, DING C, LIU J, et al. Heterostructure engineering of Co-doped MoS2 coupled with Mo2CTx MXene for enhanced hydrogen evolution in alkaline media. Nanoscale, 2019, 11(22): 10992. [64] LIM K R G, HANDOKO A D, JOHNSON L R, et al. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano, 2020, 14(11): 16140. [65] BENCHAKAR M, NATU V, ELMELEGY T A, et al. On a two-dimensional MoS2/Mo2CTx hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CTx MXene. Journal of The Electrochemical Society, 2020, 167(12): 124507. [66] WU Y, WANG L, CHAI Z, et al. Heterostructure engineering of MoS2/Mo2CTx nanoarray via molten salt synthesis for enhanced hydrogen evolution reaction. Journal of Materiomics, 2023, 9(6): 1122. [67] YI M, LI N, LU B, et al. Single-atom Pt decorated in heteroatom (N, B, and F)-doped ReS2 grown on Mo2CTx for efficient pH-universal hydrogen evolution reaction and flexible Zn-air batteries. Energy Storage Materials, 2021, 42: 418. [68] YI M, HU S, LI N, et al. Selenium vacancy-rich and heteroatom-doped CoSe/Mo2CTx MXene prepared using ionic liquid dopants for pH-universal hydrogen evolution and flexible supercapacitors. Journal of Energy Chemistry, 2022, 72: 453. [69] YI M, ZHANG X, CHEN Y, et al. Ionic liquid dopant induced abundant Ni-vacancies in N, B, F tri-doped NiSe2/Mo2CTx stabilizing of single-atom Ru for efficient hydrogen evolution reactions and flexible Zn-air batteries. ACS Sustainable Chemistry & Engineering, 2023, 11(9): 3687. [70] WU N, LIU J, ZHAO W, et al. Molybdenum carbide MXene embedded with nickel sulfide clusters as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2023, 48(46): 17526. [71] LIU S, LIN Z, WAN R, et al. Cobalt phosphide supported by two-dimensional molybdenum carbide (MXene) for the hydrogen evolution reaction, oxygen evolution reaction, and overall water splitting. Journal of Materials Chemistry A, 2021, 9(37): 21259. [72] YI M, REN Y, ZHANG X, et al. Ionic liquid-assisted synthesis of N, F, and B co-doped BiOBr/Bi2Se3 on Mo2CTx for enhanced performance in hydrogen evolution reaction and supercapacitors. Journal of Colloid and Interface Science, 2024, 658: 334. [73] ABDOLAHI B, GHOLIVAND M B, SHAMSIPUR M, et al. Introduction of a three-dimensional flower-like Mo2CTx/poly (2, 2′-dithiodianiline) on reduced graphene oxide as an efficient electrode for supercapacitor and hydrogen evolution reaction. Journal of Energy Storage, 2023, 62: 106906. [74] DING B, ONG W J, JIANG J, et al. Uncovering the electrochemical mechanisms for hydrogen evolution reaction of heteroatom doped M2C MXene (M = Ti, Mo). Applied Surface Science, 2020, 500: 143987. [75] KUZNETSOV D A, CHEN Z, KUMAR P V, et al. Single site cobalt substitution in 2D molybdenum carbide (MXene) enhances catalytic activity in the hydrogen evolution reaction. Journal of the American Chemical Society, 2019, 141(44): 17809. [76] ZHAO C, QIU C, DENG S, et al. 2D-3D transformation of palladium and gold nanoparticles on functionalized Mo2C by multiscale simulation. Applied Surface Science, 2019, 481: 554. |
[1] | TIAN Ruizhi, LAN Zhengyi, YIN Jie, HAO Nanjing, CHEN Hangrong, MA Ming. Microfluidic Technology Based Synthesis of Inorganic Nano-biomaterials: Principles and Progress [J]. Journal of Inorganic Materials, 2025, 40(4): 337-347. |
[2] | ZHANG Jiguo, WU Tian, ZHAO Xu, YANG Fan, XIA Tian, SUN Shien. Improvement of Cycling Stability of Cathode Materials and Industrialization Process for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2025, 40(4): 348-362. |
[3] | YIN Jie, GENG Jiayi, WANG Kanglong, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Recent Advances in 3D Printing and Densification of SiC Ceramics [J]. Journal of Inorganic Materials, 2025, 40(3): 245-255. |
[4] | CHEN Guangchang, DUAN Xiaoming, ZHU Jinrong, GONG Qing, CAI Delong, LI Yuhang, YANG Donglei, CHEN Biao, LI Xinmin, DENG Xudong, YU Jin, LIU Boya, HE Peigang, JIA Dechang, ZHOU Yu. Advanced Ceramic Materials in Helicopter Special Structures: Research Progress and Application Prospect [J]. Journal of Inorganic Materials, 2025, 40(3): 225-244. |
[5] | FAN Xiaobo, ZU Mei, YANG Xiangfei, SONG Ce, CHEN Chen, WANG Zi, LUO Wenhua, CHENG Haifeng. Research Progress on Proton-regulated Electrochemical Ionic Synapses [J]. Journal of Inorganic Materials, 2025, 40(3): 256-270. |
[6] | HAIREGU Tuxun, GUO Le, DING Jiayi, ZHOU Jiaqi, ZHANG Xueliang, NUERNISHA Alifu. Research Progress of Optical Bioimaging Technology Assisted by Upconversion Fluorescence Probes in Tumor Imaging [J]. Journal of Inorganic Materials, 2025, 40(2): 145-158. |
[7] | SUN Shujuan, ZHENG Nannan, PAN Haokun, MA Meng, CHEN Jun, HUANG Xiubing. Research Progress on Preparation Methods of Single-atom Catalysts [J]. Journal of Inorganic Materials, 2025, 40(2): 113-127. |
[8] | TAO Guilong, ZHI Guowei, LUO Tianyou, OUYANG Peidong, YI Xinyan, LI Guoqiang. Progress on Key Technologies of Cavity-structured Thin Film Bulk Acoustic Wave Filter [J]. Journal of Inorganic Materials, 2025, 40(2): 128-144. |
[9] | LIU Huilai, LI Zhihao, KONG Defeng, CHEN Xing. Preparation of FePc/MXene Composite Cathode and Electro-Fenton Degradation of Sulfadimethoxine [J]. Journal of Inorganic Materials, 2025, 40(1): 61-69. |
[10] | ZHOU Fan, TIAN Zhilin, LI Bin. Research Progress on Carbide Ultra-high Temperature Ceramic Anti-ablation Coatings for Thermal Protection System [J]. Journal of Inorganic Materials, 2025, 40(1): 1-16. |
[11] | WEI Xiangxia, ZHANG Xiaofei, XU Kailong, CHEN Zhangwei. Current Status and Prospects of Additive Manufacturing of Flexible Piezoelectric Materials [J]. Journal of Inorganic Materials, 2024, 39(9): 965-978. |
[12] | YANG Xin, HAN Chunqiu, CAO Yuehan, HE Zhen, ZHOU Ying. Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia Using Metal Oxides [J]. Journal of Inorganic Materials, 2024, 39(9): 979-991. |
[13] | LIU Pengdong, WANG Zhen, LIU Yongfeng, WEN Guangwu. Research Progress on the Application of Silicon Slurry in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2024, 39(9): 992-1004. |
[14] | HUANG Jie, WANG Liuying, WANG Bin, LIU Gu, WANG Weichao, GE Chaoqun. Research Progress on Modulation of Electromagnetic Performance through Micro-nanostructure Design [J]. Journal of Inorganic Materials, 2024, 39(8): 853-870. |
[15] | CHEN Qian, SU Haijun, JIANG Hao, SHEN Zhonglin, YU Minghui, ZHANG Zhuo. Progress of Ultra-high Temperature Oxide Ceramics: Laser Additive Manufacturing and Microstructure Evolution [J]. Journal of Inorganic Materials, 2024, 39(7): 741-753. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||